• Title/Summary/Keyword: CMA 핵형

Search Result 2, Processing Time 0.016 seconds

Clinical Applications of Chromosomal Microarray Analysis (염색체 Microarray 검사의 임상적 적용)

  • Seo, Eul-Ju
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.111-118
    • /
    • 2010
  • Chromosomal microarray analysis (CMA) enables the genome-wide detection of submicroscopic chromosomal imbalances with greater precision and accuracy. In most other countries, CMA is now a commonly used clinical diagnostic test, replacing conventional cytogenetics or targeted detection such as FISH or PCR-based methods. Recently, some consensus statements have proposed utilization of CMA as a first-line test in patients with multiple congenital anomalies not specific to a well-delineated genetic syndrome, developmental delay/intellectual disability, or autism spectrum disorders. CMA can be used as an adjunct to conventional cytogenetics to identify chromosomal abnormalities observed in G-banding analysis in constitutional or acquired cases, leading to a more accurate and comprehensive assessment of chromosomal aberrations. Although CMA has distinct advantages, there are several limitations, including its inability to detect balanced chromosomal rearrangements and low-level mosaicism, its interpretation of copy number variants of uncertain clinical significance, and significantly higher costs. For these reasons, CMA is not currently a replacement for conventional cytogenetics in prenatal diagnosis. In clinical applications of CMA, knowledge and experience based on genetics and cytogenetics are required for data analysis and interpretation, and appropriate follow-up with genetic counseling is recommended.

Chromosome Redundancy and Tree Phenotype Variation in Autotetraploid Trifoliate Orange (동질 사배체 탱자에서 염색체 배가와 수체 표현형의 변이)

  • Oh, Eun Ui;Chae, Chi-Won;Kim, Sat-Byul;Lu, Jian Liang;Yun, Su-Hyun;Koh, Sang-Wook;Song, Kwan Jeong
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.366-374
    • /
    • 2014
  • The study was conducted to investigate the possibility that epigenetic DNA methylation causes tree phenotypic variation in autotetraploids through evaluating the phenotypic variation and DNA methylation in autotetraploids occurred spontaneously from diploid trifoliate orange. Chromosome analysis confirmed that fourteen trifoliate orange trees of selected by flow cytometry were tetraploids (2n = 4X = 36) without any aneuploids. Chromomycin A3 staining determined that these trees were all autotetraploid with doubled chromosome set. Tree phenotypes, such as tree height and width, branching number, length, and angle, internode length, and leaf characteristics, varied in the autotetraploids. Chlorophyll indices were diverse in the autotetraploids, but photosynthetic rates were not significantly different. In addition, a wide range of variation was observed in stomatal density and guard cell length. Analysis of global cytosine DNA methylation showed that there was a variation of the methylation level in autotetraploids. More than half of 14 autotetraploids had at least 2 times higher methylation level than diploid trifoliate orange. The results indicate that tree phenotypic variation in autotetraploids might be related to global DNA methylation for reducing gene redundancy.