• Title/Summary/Keyword: CM1 cloud model

Search Result 17, Processing Time 0.022 seconds

Implementation of Improved Ice Particle Collision Efficiency in Takahashi Cloud Model (Takahashi 구름모형에서의 얼음입자 충돌효율 개선)

  • Lee, Hannah;Yum, Seong Soo
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.73-85
    • /
    • 2012
  • The collision efficiency data for collision between graupel or hail particles and cloud drops that take into account the differences of particle density are applied to the Takahashi cloud model. The original setting assumes that graupel or hail collision efficiency is the same as that of the cloud drops of the same volume. The Takahashi cloud model is run with the new collision efficiency data and the results are compared with those with the original. As an initial condition, a thermodynamic profile that can initiate strong convection is provided. Three different CCN concentration values and therefore three initial cloud drop spectra are prescribed that represent maritime (CCN concentration = 300 $cm^{-3}$), continental (1000 $cm^{-3}$) and extreme continental (5000 $cm^{-3}$) air masses to examine the aerosol effects on cloud and precipitation development. Increase of CCN concentration causes cloud drop sizes to decrease and cloud drop concentrations to increase. However, the concentration of ice particles decreases with the increase of CCN concentration because small drops are difficult to freeze. These general trends are well captured by both model runs (one with the new collision efficiency data and the other with the original) but there are significant differences: with the new data, the development of cloud and raindrop formation are delayed by (1) decrease of ice collision efficiency, (2) decrease of latent heat from riming process and (3) decrease of ice crystals generated by ice multiplication. These results indicate that the model run with the original collision efficiency data overestimates precipitation rates.

Improvement of Cloud Physics Parameterization in the KMA Earth System Model (기상청 지구시스템모델에서의 구름입자 수농도 모수화 방법 개선)

  • Lee, Hannah;Yum, Seong Soo;Shim, Sungbo;Boo, Kyung-On;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • In the Korea Meteorological Administration earth system model (HadGEM2-AO), cloud drop number concentration is determined from aerosol number concentration according to the observed relationship between aerosol and cloud drop number concentrations. However, the observational dataset used for establishing the relationship was obtained from limited regions of the earth and therefore may not be representative of the entire earth. Here we reestablished the relationship between aerosol and cloud drop number concentrations based on a composite of observational dataset obtained from many different regions around the world that includes the original dataset. The new relationship tends to provide lower cloud drop number concentration for aerosol number concentration < 600 $cm^{-3}$ and the opposite for > 600 $cm^{-3}$. This new empirical relationship was applied to the KMA earth system model and the historical run (1861~2005) is made again. Here only the 30 year (1861~1890) averages from the runs with the new and the original relationships between aerosol and cloud drop number concentrations (newHIST and HIST, respectively) were compared. For this early period aerosol number concentrations were generally lower than 600 $cm^{-3}$ and therefore cloud drop number concentrations were generally lower but cloud drop effective radii were larger for newHIST than for HIST. The results from the complete historical run with the new relationship are expected to show more significant differences from the original historical run.

Spatio-temporal soil moisture estimation using water cloud model and Sentinel-1 synthetic aperture radar images (Sentinel-1 SAR 위성영상과 Water Cloud Model을 활용한 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Sehoon;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.28-28
    • /
    • 2022
  • 본 연구는 용담댐유역을 포함한 금강 유역 상류 지역을 대상으로 Sentinel-1 SAR (Synthetic Aperture Radar) 위성영상을 기반으로 한 토양수분 산정을 목적으로 하였다. Sentinel-1 영상은 2019년에 대해 12일 간격으로 수집하였고, 영상의 전처리는 SNAP (SentiNel Application Platform)을 활용하여 기하 보정, 방사 보정 및 Speckle 보정을 수행하여 VH (Vertical transmit-Horizontal receive) 및 VV (Vertical transmit-Vertical receive) 편파 후방산란계수로 변환하였다. 토양수분 산정에는 Water Cloud Model (WCM)이 활용되었으며, 모형의 식생 서술자(Vegetation descriptor)는 RVI (Radar Vegetation Index)와 NDVI (Normalized Difference Vegetation Index)를 활용하였다. RVI는 Sentinel-1 영상의 VH 및 VV 편파자료를 이용해 산정하였으며, NDVI는 동기간에 대해 10일 간격으로 수집된 Sentinel-2 MSI (MultiSpectral Instrument) 위성영상을 활용하여 산정하였다. WCM의 검정 및 보정은 한국수자원공사에서 제공하는 10 cm 깊이의 TDR (Time Domain Reflectometry) 센서에서 실측된 6개 지점의 토양수분 자료를 수집하여 수행하였으며, 매개변수의 최적화는 비선형 최소제곱(Non-linear least square) 및 PSO (Particle Swarm Optimization) 알고리즘을 활용하였다. WCM을 통해 산정된 토양수분은 피어슨 상관계수(Pearson's correlation coefficient)와 평균제곱근오차(Root mean square error)를 활용하여 검증을 수행할 예정이다.

  • PDF

Underground Facility Survey and 3D Visualization Using Drones (드론을 활용한 지하시설물측량 및 3D 시각화)

  • Kim, Min Su;An, Hyo Won;Choi, Jae Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • In order to conduct rapid, accurate and safe surveying at the excavation site, In this study, the possibility of underground facility survey using drones and the expected effect of 3D visualization were obtained as follows. Phantom4Pro 20MP drones have a 30m flight altitude and a redundant 85% flight plan, securing a GSD (Ground Sampling Distance) value of 0.85mm and 4points of GCP (Groud Control Point)and 2points of check point were calculated, and 7.3mm of ground control point and 11mm of check point were obtained. The importance of GCP was confirmed when measured with low-cost drones. If there is no ground reference point, the error range of X value is derived from -81.2 cm to +90.0 cm, and the error range of Y value is +6.8 cm to 155.9 cm. This study classifies point cloud data using the Pix4D program. I'm sorting underground facility data and road pavement data, and visualized 3D data of road and underground facilities of actual model through overlapping process. Overlaid point cloud data can be used to check the location and depth of the place you want through the Open Source program CloudCompare. This study will become a new paradigm of underground facility surveying.

A Theoretical Study on Wet Scavenging of Atmospheric Aerosols by Rain Drops (대기에어로졸 입자의 이론적 강수세정에 관한 연구)

  • 박정호;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • In this work, a theoretical model has been formulated which allows the study of the scavenging efficiencies of aerosol particles by the rain drops. Aerosol particles are scavenged by the simultaneous brownian diffusion, interception and inertial impaction force. In addition the calculations based on the collision efficiency model are carried out for the collision of aerosol particles with diameter range 0.01~30 $mu extrm{m}$ and rain drops with diameter 0.02$\times$$2^{n/3}$(n=1, 2, …, 17)cm. The results indicate that: (1) the below-cloud scavenging affects mainly the coarse particles (>3 ${\mu}{\textrm}{m}$), the fine particles remaining almost unchanged; (2) the scavenging efficiencies by below-cloud in the heavy rain (rain intensity, 10 mm/hr) surpass the efficiency found in the drizzle rain (rain intensity, 1 mm/hr).

  • PDF

Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data (다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석)

  • Park, Soyeon;Choi, Yoonjo;Bae, Junsu;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1013-1025
    • /
    • 2020
  • Unmanned Aerial Vehicle (UAV) platform is being widely used in disaster monitoring and smart city, having the advantage of being able to quickly acquire images in small areas at a low cost. Ground Control Points (GCPs) for positioning UAV images are essential to acquire cm-level accuracy when producing UAV-based orthoimages and Digital Surface Model (DSM). However, the on-site acquisition of GCPs takes considerable manpower and time. This research aims to provide an efficient and accurate way to replace the on-site GNSS surveying with three different sources of geospatial data. The three geospatial data used in this study is as follows; 1) 25 cm aerial orthoimages, and Digital Elevation Model (DEM) based on 1:1000 digital topographic map, 2) point cloud data acquired by Mobile Mapping System (MMS), and 3) hybrid point cloud data created by merging MMS data with UAV data. For each dataset a three-dimensional positional accuracy analysis of UAV-based orthoimage and DSM was performed by comparing differences in three-dimensional coordinates of independent check point obtained with those of the RTK-GNSS survey. The result shows the third case, in which MMS data and UAV data combined, to be the most accurate, showing an RMSE accuracy of 8.9 cm in horizontal and 24.5 cm in vertical, respectively. In addition, it has been shown that the distribution of geospatial GCPs has more sensitive on the vertical accuracy than on horizontal accuracy.

Estimation of Fuel Rate on the Galactic Disk from High Velocity Cloud (HVC) Infall

  • Sung, Kwang Hyun;Kwak, Kyujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2016
  • Continuous accretion of metal-poor gas can explain the discrepancy between the number of observed G-dwarfs and the number predicted by the "simple model" of galactic evolution. The maximum accretion rate estimated based upon approaching high velocity clouds (HVCs) can be up to ${\sim}0.4M_{\odot}{\cdot}yr^{-1}$ which is comparable with the accretion rate required by many chemical evolution models that is at least ${\sim}0.45M_{\odot}{\cdot}yr^{-1}$. However, it is not clear to what extent the exchange of gas between the disk and the cloud can occur when an HVC collides with the galactic disk. Therefore, we examined a series of HVC-Disk collision simulations using the FLASH 2.5 hydrodynamics simulation code. The outcomes of our simulations show that an HVC will more likely take away substances from the galactic disk rather than adding new material to the disk. We define this as an HVC having a "negative fuel rate". Further results in our study also indicate that the process and amount of fuel rate change can have various forms depending on the density, radius and velocity of an approaching HVC. The simulations in our study covers HVCs with a neutral hydrogen volume density from $1.0{\times}10^{-2}cm^{-3}$ to $41.0cm^{-3}$, radius of 200 pc to 1000 pc and velocity in the range between $40km{\cdot}s^{-1}$ and $100km{\cdot}s^{-1}$.

  • PDF

Evolution and scaling of a simulated downburst-producing thunderstorm outflow

  • Oreskovic, Christopher;Savory, Eric;Porto, Juliette;Orf, Leigh G.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.147-161
    • /
    • 2018
  • For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.

3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR (UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현)

  • Han, Seung-Hee;Kang, Joon-Oh;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.

Grain Growth Revealed by Multi-wavelength Analysis of Non-axisymmetric Substructures in the Protostellar Disk WL 17

  • Han, Ilseung;Kwon, Woojin;Aso, Yusuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2020
  • Disks around protostars are the birthplace of planets. The first step toward planet formation is grain growth from ㎛-sized grains to mm/cm-sized grains in a disk, particularly in dense regions. In order to study whether grains grow and segregate at the protostellar stage, we investigate the ALMA Band 3 (3.1 mm) and 7 (0.87 mm) dust continuum observations of the protostellar disk WL 17 in ρ Ophiuchus L1688 cloud. As reported in a previous study, the Band 3 image shows substructures: a narrow ring and a large central hole. On the other hand, the Band 7 image shows different substructures: a non-axisymmetric ring and an off-center hole. The two-band observations provide a mean spectral index of 2.3, which suggests the presence of mm/cm-sized large grains. Its non-axisymmetric distribution may imply dust segregation between small and large grains. We perform radiative transfer modeling to examine the size and spatial distributions of dust grains in the WL 17 disk. The best-fit model suggests that large grains (>1 cm) exist in the disk, settling down toward the midplane, whereas small grains (~10 ㎛) well mixed with gas are distributed off-center and non-axisymmetrically in a thick layer. The low spectral index and the modeling results suggest that grains rapidly grow at the protostellar stage and that grains differently distribute depending on sizes, resulting in substructures varying with observed wavelengths. To understand the differential grain distributions and substructures, we discuss the effects of the protoplanet(s) expected inside the large hole and the possibility of gravitational instability.

  • PDF