• Title/Summary/Keyword: CKBBP1/SAG

Search Result 2, Processing Time 0.015 seconds

The Ring-H2 Finger Motif of CKBBP1/SAG Is Necessary for Interaction with Protein Kinase CKII and Optimal Cell Proliferation

  • Kim, Yun-Sook;Ha, Kwon-Soo;Kim, Young-Ho;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.629-636
    • /
    • 2002
  • Protein kinase CKII (CKII) is required for progression through the cell division cycle. We recently reported that the $\beta$ subunit of protein kinase CKII ($CKII{\beta}$) associates with CKBBP1 that contains the Ring-H2 finger motif in the yeast two-hybrid system. We demonstrate here that the Ring-H2 finger-disrupted mutant of CKBBP1 does not interact with purified $CKII{\beta}$ in vitro, which shows that the Ring-H2 finger motif is critical for direct interaction with $CKII{\beta}$. The CKII holoenzyme is efficiently co-precipitated with the wild-type CKBBP1, but not with the Ring-H2 finger-disrupted CKBBP1, from whole cell extracts when epitope-tagged CKBBP1 is transiently expressed in HeLa cells. Disruption of the Ring-H2 finger motif does not affect the cellular localization of CKBBP1 in HeLa cells. The increased expression of either the wild-type CKBBP1 or Ring-H2 finger-disrupted CKBBP1 does not modulate the protein or the activity levels of CKII in HeLa cells. However, the stable expression of Ring-H2 finger-disrupted CKBBP1 in HeLa cells suppresses cell proliferation and causes the accumulation of the G1/G0 peak of the cell cycle. The Ring-H2 finger motif is required for maximal CKBBP1 phosphorylation by CKII, suggesting that the stable binding of CKBBP1 to CKII is necessary for its efficient phosphorylation. Taken together, these results suggest that the complex formation of $CKII{\beta}$ with CKBBP1 and/or CKII-mediated CKBBP1 phosphorylation is important for the G1/S phase transition of the cell cycle.

Identification of Mutations in Protein Kinase CKIIβ Subunit That Affect Its Binding to Ribosomal Protein L41 and Homodimerization

  • Ahn, Bong-Hyun;Lee, Ji-Hoon;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.344-348
    • /
    • 2003
  • Protein kinase CKII is composed of two catalytic ($\alpha$ or $\alpha$') subunits and two regulatory ($\beta$) subunits. The $CKII{\beta}$ subunit is thought to mediate the tetramer formation and interact with other target proteins. However, its physiological function remains obscure. In this study, point mutants of $CKII{\beta}$ that are defective for the L41 binding were isolated by using the reverse two-hybrid system. A sequence analysis of the point mutants revealed that Asp-26, Met-52, and Met-78 of $CKII{\beta}$ are critical for L41 binding; Asn-67 (and/or Lys-139) and Met-52 are important for $CKII{\beta}$ homodimerization. Two point mutants, R75 and R83, of $CKII{\beta}$ interacted with L5, topoisomerase $II{\beta}$, and CKBBP1/SAG, but not with the wild-type $CKII{\beta}$. This indicates that $CKII{\beta}$ homodimerization is not a prerequisite for its binding to target proteins. These $CKII{\beta}$ point mutants may be useful in exploring the biochemical physiological functions of $CKII{\beta}$.