Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 일반적으로 Soda lime glass/Mo/CIGS/CdS/ZnO/ITO/Al의 구조로 제작된다. 태양전지는 p형과 n형 반도체의 접합에 의해서 동작을 하게 되며, CIGS 박막 태양전지에서는 p형으로 CIGS 박막과 n형으로 CdS 박막이 사용된다. CIGS 박막태양전지에서는 p형과 n형이 서로 다른 물질로 이루어진 이종접합을 이루게 되고, 계면에서의 밴드가 어떻게 형성이 되느냐에 따라 태양전지 성능에 영향을 미치게 된다. p형의 CIGS 박막은 주로 다단계 증발법에 의해 형성되고 3단계 공정조건에 의해 계면의 특성에 많은 영향을 미치게 된다. n형의 CdS 박막은 주로 chemical bath deposition (CBD) 법에 의해 제작된다. 이렇게 제작되는 CBD-CdS는 시약의 농도, pH (수소이온농도), 박막 형성시의 온도 등의 조건에 따라 특성이 변하게 된다. 본 논문에서는 3단계 공정시간을 변화시켜 제작된 CIGS 박막 위에 CBD-CdS 증착 조건 중 thiourea 의 농도를 변화시켜 CIGS 태양전지를 제작하고 그에 따른 특성을 살펴보았다. CIGS 박막은 3단계 공정시간을 490초와 360초로 하여 제작하였고, CdS 박막은 thiourea 농도를 각각 0.025 M과 0.05 M, 0.074 M, 0.1 M로 변화시켜가며 제작하였다. 제작된 CIGS 박막 태양전지는 CIGS 3단계 공정시간과 thiourea의 조건에 따라 최고 15.81%, 최저 14.13%로 나타내었다. 또한, 외부양자효율을 측정하여 제작된 CIGS 박막 태양전지의 파장에 따른 특성을 비교하였다.
CIGS 박막 태양전지는 제조단가가 낮고 박막 태양전지 중에서 변환효율이 가장 높아 발전 가능성이 큰 태양전지로 인식되고 있다. 이미 일본, 독일, 미국을 비롯한 선진국에서는 30-50 MW 급의 양산 라인이 구축되고 있어 2010년 이후에는 본격적인 상용화가 진행될 것으로 보인다. CIGS 광흡수층은 진공증발, 셀렌화, 나노입자, 전기도금등 다양한 방식으로 제조가 가능한데 이 중에서도 동시진공증발공정은 고효율 CIGS 박막 태양전지 제조에 적합하다. 본 연구에서는 동시진공증발법을 이용하여 CIGS 박막을 증착하였으며 소다회유리/Mo/CIGS/CdS/i-ZnO/n-ZnO/Al/AR 구조의 태양전지를 제조하였다. 기판온도 모니터링을 통한 Cu 이차상 조절 기술을 이용하여 결정립이 매우 큰 CIGS 박막을 증착하였으며 Ga/(In+Ga) 조성비의 조절을 통하여 밴드갭 에너지를 최적화하였다. 또한 QCM 장치를 활용하여 용액 속에서 성장되는 CdS 박막의 두께와 특성을 조절하였다. 이러한 공정최적화를 통하여 개방전압 0.65 V, 단락전류밀도 38.8 $mA/cm^2$, 충실도 0.74 그리고 변환효율 18.8% 의 CIGS 박막 태양전지를 얻었다.
CIGS 박막태양 전지는 I-III-VI2 Chalcopyrite 결정구조를 가진 화합물 반도체 태양전지로 인위적인 밴드갭 조작이 용이하여 효율 향상에 높은 가능성을 보이고 있다. 4원소 화합물인 CIGS 광흡수층의 대표적인 제조 방법으로는 co-evaporation 공정법이 있다. 동시 증발법은 CIGS 결정을 최적화하기 위하여 박막이 증착되는 동안 기판의 온도를 3단계로 변화시켜주는 3-stage 공정을 통하여 제작된다. 일반적으로 CIGS 박막태양전지는 전면전극으로 투명전도막이 사용되며 높은 광투과성과 전기전도성을 가져야 한다. 투명전도막의 광학적, 전기적 특성은 CIGS 박막태양전지의 효율에 영향을 미치기 때문에 최적화된 조건이 요구된다. 본 연구에서는 CIGS 광흡수층은 Ga/(In+Ga)=0.31, Cu/(In+Ga)=0.86으로 최적화 시켰으며, 투명전도막은 Al이 도핑된 ZnO 박막을 RF 마그네트론 스퍼터링법을 이용하여 증착하였다. ZnO:Al 박막의 두께를 가변하여 증착하였으며 박막의 특성을 평가하고, CIGS 광흡수층에 이를 적용함으로써 태양전지 변환효율 특성을 연구하였다. CIGS 박막 태양전지의 투명전극인 ZnO:Al 박막의 두께가 500 nm 일 때, Jsc=29.521 mA/cm2, Voc=564 mV, FF factor=71.116%, Efficiency=12.375%의 광 변환효율을 얻을 수 있었으며, 이에 따른 투명 전도막의 전기적, 광학적 특성을 통해 CIGS 박막태양전지에 미치는 영향에 대해 조사하였다.
CIGS 박막 태양전지는 저가 기판의 사용, 원소재 소비가 적은 박막 증착, 연속공정 적용 등으로 인해 결정질 실리콘 태양전지에 비해 제조단가가 낮다. 변환효율의 경우 실험실 수준에서 최고 20%의 효율이 보고되고 있어 다결정 실리콘 태양전지와 견줄 만하다. 따라서 CIGS 박막 태양전지는 제조단가와 효율 면에서 매우 우수한 경쟁력을 가진 태양전지로 인식되고 있다. 일반적으로 CIGS 박막 태양전지는 Substrate/Mo전극/CIGS 광흡수층/CdS 버퍼층/ZnO 투명전극의 기본 구조를 가지고 있으며 다양한 공정과 디자인을 적용하여 제품이 생산되고 있다. 다양한 소재와 공정들 가운데에서 유리 소재를 기판으로 사용하면서 진공증발이나 스퍼터링과 같은 Physical Vapour Deposition(PVD)을 적용하여 CIGS 광흡수층을 제조하는 기술이 가장 보편적으로 적용되고 있다. 즉 상용화에 가장 근접해 있는 기술이라고 할 수 있으며 현재는 대량생산체제 구축을 위한 기술 개발이 진행되고 있다. 또한 종래의 기판소재와 광흡수층 제조 공정의 단점을 극복하기 위한 기술들도 개발되고 있다. 특히 유리 기판 소재를 금속이나 폴리머 소재를 대체하는 기술, PVD 공정이 아닌 비진공 공정을 적용하여 CIGS 광흡수층을 제조하는 기술 등은 응용성과 제조 단가 측면에서의 파급력이 크다고 할 수 있다. 본 발표에서는 저가 고효율 CIGS 박막 태양전지 개발을 위한 이슈들을 정리하고, 이를 해결하기 위한 국내외의 연구 개발 동향을 살펴보고자 한다. 또한 이를 바탕으로 하여 CIGS 박막 태양전지의 발전방향에 대해서 전망하고자 한다.
CIGS 박막태양전지는 박막태양전지 중 최고 효율(20%)을 보이는 태양전지로 각광받고 있다. 이러한 고효율 태양전지는 Soda-lime glass 를 기판으로 사용한 경우로 기판과 CIGS층의 열팽창계수가 비슷하고 또 나트륨이 CIGS 성장시 확산하여 광흡수층에 유익한 영향을 준다고 알려져 있다. 본 실험에서는 나트륨이 함유된 소다라임유리와 거의 포함하고 있지 않은 코닝유리를 기판으로 사용하여 CIGS 광흡수층의 차이를 분석하였다. SIMS, SEM분석결과 소다라임유리의 CIGS Mo 부근과 표면부위에 Na 농도가 높으며, grain 크기가 코닝에 비해 작음을 알 수 있었다. 전기적 특성은 소다라임유리기판의 경우 p-type 농도가 코닝유리기판에 비해 약 $10^5{\sim}10^6$천배가량 높음을 확인하였다. 셀특성또한 코닝 11%, SLG는 16%로 효율차이가 발생하였으며 이는 나트륨으로 p-type 전도도가 향상되어 효율이 개선되는 것으로 판단된다.
CIS(CuInSe2)계 화합물 태양전지는 높은 광흡수계수와 열적 안정성으로 고효율 태양전지 제조가 가능하여 태양전지용 광흡수층으로 매우 이상적이다. 미국 NREL에서는 이러한 CIGS 태양전지를 Co-evaporation 방법으로 제조 20%이상의 에너지 변환 효율을 달성하였다고 보고하였다. CIGS 태양전지의 경우 기존의 유리 기판 대신 유연한 철강 기판을 사용해 태양전지를 flexible하게 제조 할 수 있다는 장점이 있다. 이러한 flexible 태양전지의 경우 기존의 rigid 태양전지의 적용분야 뿐만 아니라 BIPV, 선박, 장난감, 군용, 자동차등 더욱더 많은 분야에 활용이 가능하다. 하지만 flexible 태양전지에 사용되는 철강기판의 경우 기존의 유리 기판인 SLG에 함유되어 있는 Na이 첨가되어 있지 않아 별도의 Na 첨가가 필요하다. Na은 CIGS 광흡수층의 결정을 증가 시키며 태양전지의 전기적 특성을 향상시킨다. 이러한 Na이 없는 경우 효율이 감소한다. 따라서 flexible 태양전지 개발을 위해서는 Na 첨가에 대한 연구가 필수적이다. 본 연구에서는 Na의 증착 순서를 변화시켜서 CIGS 증착 전, 동시증착, CIGS 증착 후로 나누어 CIGS 광흡수층 결정성의 변화를 알아보고자 한다. Na의 두께를 5nm에서 500nm 까지 단계 별로 나누어 실험을 실시하였다. 이때 CIGS 광흡수층은 미국의 NREL과 같은 3 stage 방식을 이용하였다. 1st stage의 시간은 15분으로 고정하였으며 기판온도는 약 $300^{\circ}C$로 고정 하였다. 2nd stage는 실시간 온도 감지 장치를 이용하여 Cu와 In+Ga의 조성비가 1:1이 되는 시간을 기준으로 Cu의 조성을 30%더 높게 조절하였으며 기판 온도는 약 $640^{\circ}C$로 고정 후 실험을 실시하였다. 3rd stage의 경우 Cu poor 조성으로 조절하기 위해 모든 조건을 10분으로 고정 후 실험을 실시하였다. 기판은 Na의 영향만을 비교하기위하여 Na이 첨가되어있지 않은 corning glass를 사용하였다. 후면 전극으로 약 $1{\mu}m$ 두께의 Mo을 DC Sputtering 방법을 이용하여 증착 하였다. 각각의 Na 두께에 따른 CIGS 광흡수층의 특성을 분석하기 위해 FE-SEM, XRD 분석을 실시하였다.
Cu(In,Ga)$Se_2$, $CuInS_2$ 등의 CIS계 화합물 박막 소재를 활용한 태양전지는 높은 광흡수 계수, 상대적으로 높은 변환 효율 및 미래의 잠재적 변환 효율, 화학적 안정성, 도시적인 미관 등의 장점으로 인하여 활발한 연구 및 양산화가 진행 중에 있다. CIGS 박막 태양전지 내에서 광생성된 캐리어들의 재결합 메커니즘을 이해하고 태양에너지의 변환 중 에너지 손실을 더욱 줄이기 위해서는 CIGS 태양전지의 결함 특성에 대한 규명이 중요하며, 이차상의 분리, 셀렌화, Na 확산 등과 같이 CIGS 화합물 박막이 성장하는 동안 일어나는 현상들과 결함발생 사이의 관계에 대한 체계적인 연구가 필수적이다. 특히, CIGS 박막 성장 공정 중 Se flux는 CIGS 막의 성장과 소자의 전기적 파라미터에 영향을 미치므로, Se 조절 및 이에 관련된 결함들을 이해하는 것은 CIGS 박막 태양전지의 전기적 특성을 향상시키는 중요한 열쇠가 된다. 본 연구에서는 3단계 동시증발공정을 이용하여 CIGS 박막 태양전지를 제조 분석하여, 공정 중기판온도 및 Se flux가 CIGS 박막 성장에 미치는 영향을 파악하고자 하였으며, 이를 통한 공정조건 최적화로 CIGS 박막 태양전지의 특성을 향상시키고 고효율을 달성할 수 있음을 확인하였다.
CIGS 태양전지는 박막 태양전지 중 가장 높은 potential을 지닌 태양전지로 각광받고 있으나, 상업적 이행이 타 박막 태양전지에 비해 더디게 진행되고 있다. 그 이유는 기존의 잘 알려진 방식이 고효율에는 유리하나, 양산용 설비의 개발 미비 등 양산관점에서 매우 불리하기 때문이다. 또한, CIGS 태양전지를 상업화하기 위해 많은 기업과 연구 집단에서 개발을 진행하고 있으나, 대부분 각 기업의 노하우적 성격이 강하여, 기술이 보편화되지 못한 것도 주요한 원인이다. CIGS 태양전지의 다양한 제조기술 중 현재까지 가장 양산화에 유리한 기술은 Sputter/Se화 기술이다. 이는 기존 FPD/semi conductor 산업에서 발전된 sputter 및 열처리 기술을 활용할 수 있기 때문이다. 그러나, CIGS 태양전지는 기본적으로 4원~5원 화합물 태양전지이므로, 기존의 장비 및 기술을 그대로 적용하는 것에는 많은 어려움이 따른다. 본 paper에서는 CIGS 태양전지의 일반적인 제조기술과 sputter/Se화 기술에 대해서 논의하고자 한다.
박막태양전지의 경우 기판재와 태양전지를 구성하는 반도체 층간의 열팽창 거동 차이가 태양전지의 변형을 야기한다. 이러한 열변형은 태양전지의 효율에 영향을 주는 것으로 알려져 있다. 그러므로 태양전지를 구성하는 반도체 층과 열팽창 거동이 유사한 기판재의 적용이 필요하다. 본 연구에서는 연성 CIGS 태양전지를 구성하는 기판과 박막층의 두께변화가 열공정 중 발생하는 잔류응력에 미치는 영향을 전산해석 하고자 하였다. 전산해석 결과 Fe-52wt%Ni 기판재의 두께가 증가함에 따라 CIGS 박막층 내부의 잔류응력은 감소하였다. SiO2 절연층의 두께가 증가하면 CIGS 박막층의 잔류응력이 증가하였다. Mo 후면전극층이 얇아지면 잔류응력이 감소하였으나 CIGS층의 두께변화는 CIGS층의 잔류응력에 큰 영향을 미치지 않았다.
최근 $Cu(In,Ga)Se_2$(CIGS)와 같은 박막 태양전지에 대한 연구가 많은 관심을 끌고 있다. CIGS 태양전지의 광투과층으로 사용되고 있는 II-VI족 화합물 반도체인 CdS는 상온에서의 에너지 밴드 갭(band gap)이 2.42eV 정도로서, 가시광영역의 많은 빛을 투과시키고, 적절한 제작 조건하에서 비교적 낮은 비저항을 나타내기 때문에 널리 사용되고 있다. 하지만 CIGS 태양전지 연구는 주로 CIGS 흡수층 제조공정에 편중되어 있으며, CdS 버퍼층 공정조건에 대한 체계적인 연구가 부족하다고 판단된다. 습식공정인 Chemical Bath Deposition (CBD)에 의해 주로 제조되는 CdS는 단순한 제조공정에도 불구하고 CIGS 태양전지의 성능에 지대한 영향을 미치는 것으로 알려져 있다. 특히, CdS합성반응이 개시되기 전까지의 용액잔류시간 (dip time)은 CIGS내로의 Cd이온 농도를 결정하는 중요한 공정변수로 판단된다. CIGS 표면에 Cd이 도핑될 경우, CIGS는 n형 전도성을 갖는 얇은 층을 갖게 되어 전체적으로 n-CIGS/p-CIGS의 동종 접합을 형성하는 장점을 부여할 것으로 기대된다. 따라서 본 논문에서는 dip time을 주요변수로 하여 CIGS 태양전지의 성능에 미치는 영향을 주로 고찰하였다. Cd의 확산 정도는 secondary ion mass spectroscopy (SIMS)를 이용하여 정량화하였으며, 제조된 CIGS 태양전지의 전류-전압 특성과 상관성을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.