• Title/Summary/Keyword: CIE Lab 컬러공간

Search Result 4, Processing Time 0.019 seconds

A Novel Color Conversion Method for Color Vision Deficiency using Color Segmentation (색각 이상자들을 위한 컬러 영역 분할 기반 색 변환 기법)

  • Han, Dong-Il;Park, Jin-San;Choi, Jong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.37-44
    • /
    • 2011
  • This paper proposes a confusion-line separating algorithm in a CIE Lab color space using color segmentation for protanopia and deuteranopia. Images are segmented into regions by grouping adjacent pixels with similar color information using the hue components of the images. To this end, the region growing method and the seed points used in this method are the pixels that correspond to peak points in hue histograms that went through a low pass filter. In order to establish a color vision deficiency (CVD) confusion line map, we established 512 virtual boxes in an RGB 3-D space so that boxes existing on the same confusion line can be easily identified. After that, we checked if segmented regions existed on the same confusion line and then performed color adjustment in an CIE Lab color space so that all adjacent regions exist on different confusion lines in order to provide the best color identification effect to people with CVDs.

Color Image Segmentation Using Adaptive Quantization and Sequential Region-Merging Method (적응적 양자화와 순차적 병합 기법을 사용한 컬러 영상 분할)

  • Kwak, Nae-Joung;Kim, Young-Gil;Kwon, Dong-Jin;Ahn, Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.473-481
    • /
    • 2005
  • In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.

  • PDF

Image Quality Assessment Using Perceptual Color Difference (인지적 색 차이를 사용한 이미지 품질 평가)

  • Lee, Jee-Yong;Kim, Young-Jin
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.837-840
    • /
    • 2015
  • SSIM은 인간의 시각 체계가 이미지의 구조적 정보에 예민하다는 점을 이용하여 여러 가지 구조적 정보들의 유사성을 계산함으로써 이미지를 평가하는 대표적인 이미지 평가 기법이다. 하지만 SSIM은 컬러 이미지들에 대해 색 차이를 고려하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해, HSI 색 공간을 활용한 SHSIM 기법이 제안되었으나 이 기법 또한 두 컬러 이미지 간 인지적인 색 차이를 충분히 반영하지는 못하고 있다. 본 논문에서는 CIE Lab 색 공간을 도입하여 대응 되는 픽셀들의 인지적 색 차이를 계산하여 이미지 평가에 활용하는 방법을 제안한다. 제안하는 기법의 성능을 평가하기 위해, 이미지 평가 분야에서 가장 많이 알려진 네 가지의 데이터베이스와 네 종류의 평가 기준들을 이용하였다. 실험 결과에서는 제안하는 기법이 다른 기법들보다 인간 시각 체계와 더 상관성이 높다는 것을 보여줌으로써 성능을 증명하였다.

Perceptual Color Difference based Image Quality Assessment Method and Evaluation System according to the Types of Distortion (인지적 색 차이 기반의 이미지 품질 평가 기법 및 왜곡 종류에 따른 평가 시스템 제안)

  • Lee, Jee-Yong;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1294-1302
    • /
    • 2015
  • A lot of image quality assessment metrics that can precisely reflect the human visual system (HVS) have previously been researched. The Structural SIMilarity (SSIM) index is a remarkable HVS-aware metric that utilizes structural information, since the HVS is sensitive to the overall structure of an image. However, SSIM fails to deal with color difference in terms of the HVS. In order to solve this problem, the Structural and Hue SIMilarity (SHSIM) index has been selected with the Hue, Saturation, Intensity (HSI) model as a color space, but it cannot reflect the HVS-aware color difference between two color images. In this paper, we propose a new image quality assessment method for a color image by using a CIE Lab color space. In addition, by using a support vector machine (SVM) classifier, we also propose an optimization system for applying optimal metric according to the types of distortion. To evaluate the proposed index, a LIVE database, which is the most well-known in the area of image quality assessment, is employed and four criteria are used. Experimental results show that the proposed index is more consistent with the other methods.