• Title/Summary/Keyword: CHP investment

Search Result 7, Processing Time 0.02 seconds

Real Option Analysis for Medium-scale CHP Plant Investment with Volatile Electricity Prices (실물옵션을 이용한 소형열병합발전의 경제성 평가 : 전력가격 변동성을 고려하여)

  • Park, Hojeong;Jang, Chulho
    • Environmental and Resource Economics Review
    • /
    • v.16 no.4
    • /
    • pp.763-779
    • /
    • 2007
  • The combined heat-and-power (CHP) plant is recently suggested as an effective resolution in response to recent rising oil prices and the Kyoto Protocol. This research provides a model for economic appraisal to evaluate CHP investment. Real option model is developed to incorporate a case where the investment is irreversible and underlying revenue is stochastic. The analysis shows that power plant capacity more than 40 Gcal makes CHP investment profitable while the results may vary 10 modest level with respect to investment cost, heat sales price and discount rate.

  • PDF

Fuel cell based CHP technologies for residential sector (연료전지와 마이크로 열병합 발전기술)

  • Son, Young Mok
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.251-258
    • /
    • 2016
  • This article reports current status of micro fuel cell-combined heat and power (${\mu}FC$-CHP) systems which utilize both power and heat generated by fuel cells. There are several options for constructing CHP systems and among them, fuel cells are the most useful and their total energy efficiency combining heat and power can reach up to about 90%. Fuel cells are classified as five types based on the electrolyte, but the most suitable fuel cell types for the ${\mu}FC$-CHP system are proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). ${\mu}FC$-CHP systems have several advantages such as decrease of the transmission-distribution loss, reduced costs of electricity due to distributed power generation, and environmental-friendliness owing to zero emission. The main drawback of the ${\mu}FC$-CHP systems is the high initial investment, however, it keeps decreasing as the technology development reduces production costs. Currently, Japan is the most leading country of the ${\mu}FC$-CHP market, however, Korea tries to expand the market by planning the deployment of 1 million units of ${\mu}FC$-CHP systems and governmental subsidiary supporting of half of the install price. In this report, integration technologies for connecting FC and CHP, and technology trends of leading countries are presented as well.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

A Survey of Bioenergy Resources Potential and the Prospect of Cooperation in Yanbian Korean Autonomous Prefecture

  • Kim, Zin-Oh;Oh, Sang-Myon;Lee, Yong-Woo
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Yanbian Korean Autonomous Prefecture(YKAP) possesses the potential to become the first testing ground for the North-East Asian Energy Cooperation in renewable energy sector. We found that production of biodiesel from rapeseed and CHP (Combined Heat and Power Plant) project utilizing abundant forest resources are the two main bioenergy development projects which may have further development potential considering the resource endowments and the focus of Chinese governments' current rural development policy. Provision of stable and transparent investment environments and the development of a close cooperation mechanism between Korea and China government are the prerequisite conditions for investments in the sector. Other international institutional agreements, such as CDM, shall be fully utilized for biomass CHP projects.

Influence of District Heating Return Temperature on Performance of Steam Turbine in Cogeneration Plant (지역난방 회수온도가 열병합발전소 증기터빈 성능에 미치는 영향 연구)

  • Kim, Jonghyun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.42-48
    • /
    • 2018
  • If the combined operation of Gwanggyo Cogeneration plant is similar to that of 2017, the CHP return temperature is lowered to $4^{\circ}C$, $6.3^{\circ}C$ and $7.8^{\circ}C$ according to the increase of heat surface area and the electric power is increased by 413 kW and 676 kW from its original 39,025 kW, and when the heat surface area is increased 75% electric power increases by 834 kW, totaling 39,859 kW. NPV, which is an economic analysis standard, is worth 350 million won, 500 million won, and 520 million won, and all measures to increase the heat surface area are proven to be worth the investment. As the heat transfer area increased, the electric power and NPV increased proportionally but the rise amount decreased. The electrical output and NPV were found to be the highest among the three options when the heat transfer area was increased by 75%.

  • PDF

The Feasibility Analysis of 9.9 MW Biomass Cogeneration System (9.9MW급 바이오매스 열병합발전 타당성 연구)

  • Choi, Jaiyoung;Shul, Yonggun
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.40-47
    • /
    • 2014
  • This study is intended to analyze the appropriate scope for 9.9MW biomass cogeneration, feasibility and sensitivity according to changing market situation. In the study, the heat load is classified into three types to predict heat sales and find out the appropriate scope of thermal business that is operated in CHP 34.42 Gcal/h, PLBwg 70 Gcal/h of cogeneration. the feasibility is estimated based on internal rate of return (IRR) and net present value(NPV). the sensitivity is analyzed in terms of biomass fuel cost, unit price of heating cost, investment cost, SMP unit price and REC unit price.

Evaluation of Economic Feasibility of Power Generation System using Waste Woody Biomass in a CFBC Plant (순환유동층연소로에서 폐목질계 바이오매스를 이용한 발전 시스템의 경제성 평가)

  • Kim, Sung-June;Nam, Kyung-Soo;Lee, Jae-Sup;Seo, Seong-Seok;Lee, Kyeong-Ho;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Economic feasibility of power generation system using waste woody biomass in a circulating fluidized bed combustor has been investigated. Effects of important variables such as capital investment, cost of waste wood, certified emission reduction(CER), system marginal price(SMP) on the benefit of business have been analyzed. Internal rate of return(IRR) was predicted as 16.67%, which implicates the business is promising based on the assumptions such as SMP of 99 Won/kWh, capital cost of 10.65 billion won, and complimentary providing of waste wood. Major factors affecting the benefit of business were as follows; system marginal price, operational rate, capital investment, expenditure of waste wood, certified emission reduction. In addition, it must be necessary to consider CHP power plant providing steam as one of the means to diversify sales network, for the management of the business risk.