• 제목/요약/키워드: CHEMKIN package

검색결과 14건 처리시간 0.023초

스크램제트 연료로써 JP-7 의 점화 특성 (Ignition Characteristics of JP-7 as a Scramjet Fuel)

  • 최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.377-380
    • /
    • 2005
  • 산소 및 공기와 반응시 크랙된 JP-7 연료의 점화 특성에 관한 연구를 넓은 범위의 압력(1-20atm)과 온도(1200-2000K), 당량비(0.5-1.5)에 대해서 수행하였다. Chemkin-II Package와 최소 자승법을 이용하여 $\tau=Aexp(E/RT)[F]^{a}[O_2]^{b}$형태로 점화 지연시간을 계산하고 각 변수 사이의 상호관계를 검증하였다. 크랙된 JP-7 연료에서 $C_3$ 탄화수소 계열 성분의 영향을 두 가지 다른 크랙된 JP-7연료의 조성에 대하여 점화지연 시간을 비교하였으며, 액체 JP-7 연료의 점화 지연 시간과도 비교하여 보았다.

  • PDF

케로신/액체산소의 고압 연소해석을 위한 열역학/전달 물성치 해석 패키지 개발 (Development of Real-Fluid Package Compatible with Chemkin for High-Pressure Kerosene/LOx Combustion)

  • 김성구;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.89-92
    • /
    • 2011
  • 초임계 압력 조건에서 분사된 액체추진제의 혼합 및 연소 현상을 해석하기 위해서는 열역학적 비이상성과 전달 물성치의 특이성을 예측하는 것이 선행되어야 한다. 본 연구에서는 일반화된 3차 상태방 정식(cubic EoS)을 기반으로 실제유체의 열역학/전달 물성치를 계산하는 서브루틴들을 개발하였으며, 표준 화학반응 패키지인 Chemkin과 쉽게 연동될 수 있도록 하였다. 실제유체 해석 패키지를 이용하여 기존의 층류화염편 코드를 확장하였으며, 실제 로켓엔진이 갖는 고압 연소조건하에서 케로신과 액체산소의 국소화염구조에 대한 수치해석 연구를 수행하였다.

  • PDF

상세화학반응식을 이용한 HCCI 엔진의 성능 해석기법 연구 (A Cycle Simulation Method for an HCCI Engine using Detailed Chemical Kinetics)

  • 송봉하;김동광;조남효
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.51-58
    • /
    • 2003
  • A cycle simulation method is developed by coupling a commercial code, Ricardo's WAVE, with the SENKIN code from CHEMKIN packages to predict combustion characteristics of an HCCI engine. By solving detailed chemical kinetics the SENKIN code calculates the combustion products in the combustion chamber during the valve closing period, i.e. from IVC to EVO. Except the combustion chamber during the valve closing period the WAVE code solves thermodynamic status in the whole engine system. The cycle simulation of the complete engine system is made possible by exchanging the numerical solutions between the codes on the coupling positions of the intake port at IVC and of the exhaust port at EVO. This method is validated against the available experimental data from recent literatures. Auto ignition timing and cylinder pressure are well predicted for various engine operating conditions including a very high ECR rate although it shows a trend of sharp increase in cylinder pressure immediate after auto ignition. This trend is overpredicted especially for EGR cases, which may be due to the assumption of single-zone combustion model and the limit of the chemical kinetic model for the prediction of turbulent air-fuel mixing phenomena. A further work would be needed for the implementation of a multi-zone combustion model and the effect of turbulent mixing into the method.

메탄-산소 층류화염전파속도 측정 (Determination of Laminar Burning Velocity in Premixed Oxy-Methane Flames)

  • 오정석;노동순;이은경;홍성국
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2011
  • 실험용 분젠 연소기를 사용하여 예혼합된 메탄-산소 층류화염전파속도를 연구하였다. 이를 위해 $CH^*$ 자발광 측정기법과 슐리렌 사진술이 사용되었다. 실험결과는 CHEMKIN 3.7을 이용한 수치해석 결과와 비교하였다. 층류화염전파속도를 측정하기 위하여 층류여역 내에서 전체 당량비는 0.5에서 2.0까지 조절하였다. 동축 화염에서 화염전파속도는 각도측정법을 사용하였으며 슐리렌 사진에서는 3.1 m/s로 $CH^*$ 자발광 사진에서는 2.9 m/s로 측정되었다.

  • PDF

각도법과 동심형 확장 채널 연소기를 이용한 연소속도 측정 및 화염 발광 특성에 관한 연구 (A Study on the Laminar Burning Velocity Using an Angle Method and Annular Diverging Channel Combustor and Characteristics Of Chemiluminescence)

  • 윤승호;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.91-94
    • /
    • 2014
  • In this study, the laminar burning velocities of SNG fuel were studied using both experimental measurements and kinetic simulations. They were measured using the angle method of Bunsen flame configuration and the annular diverging channel combustor. And they were also numerically calculated by CHEMKIN Package with GRI 3.0 mechanisms. Spectrometer was used for characteristics of flame chemiluminescence of SNG fuels. From results of this work, first, we found that according to adding $H_2$ contents in the fuels the laminar burning velocities of SNG fuels were increased. And second, we also discovered existence of OH*, CH*, $C_2*$, HCO*, $CH_2*$ radicals and their correlation.

  • PDF

부력을 받는 확산화염에 대한 수치 시뮬레이션 (Numerical Simulation of Buoyant Diffusion Flame)

  • 오창보;이의주
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.234-237
    • /
    • 2008
  • A direct numerical simulation (DNS) code suitable for the prediction of buoyant jet diffusion flames was developed in this study. The thermodynamic and transport properties were evaluated using CHEMKIN package to enhance the prediction performance of the developed DNS code. A two dimensional simulations were performed for the jet diffusion flames in normal and zero-gravity conditions where the Froude numbers are 5 and infinity, respectively. The simulated buoyant jet diffusion flame in normal gravity showed that the unsteady and dynamic motion although the reynolds number is low (400). It was identified that the flame in normal gravity flickered periodically. The periodic motion of the flame disappeared in zero-gravity condition. The dynamic motion of the buoyant jet diffusion flame could be well understood by comparing the flame structures obtained by the simulations of normal and zero-gravity conditions.

  • PDF

SNG 연료의 셀 불안정성 및 층류연소속도에 관한 실험적 연구 (An Experimental on Cellular Instability and Laminar Burning Velocity of SNG Fuel)

  • 김동찬;조준익;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.109-112
    • /
    • 2015
  • This article describes a cellular instability and laminar burning velocity of simulated synthetic natural gas(SNG) including 3% hydrogen. In this study, experimental apparatus is employed using cylindrical bomb combustor, and investigation is carried out with high speed camera and Schlieren system. The cellular instability is caused by the buoyancy, hydrodynamic instability. Unstretched burning velocity can be determined by extrapolated stretch rate of zero point from measured results. These results were also compared with numerical calculation by Chemkin package with GRI 3.0, USC-II, WANG, C3 Fuel mechanism. As an experimental conditions, equivalence ratios was adjusted from 0.8 to 1.3. From results of this work, the one was found that the cellular instability has occurred by effect of thermal expansion rate and flame thickness. As the other results, unstretched laminar burning velocity was best coincided with GRI 3.0 mechanism.

  • PDF

부력 영향을 받는 제트 확산화염의 화염편 구조에 관한 수치계산 연구 (Numerical Investigation of the Flamelet Structure of Buoyant Jet Diffusion Flames)

  • 오창보;이의주
    • 한국안전학회지
    • /
    • 제24권1호
    • /
    • pp.14-20
    • /
    • 2009
  • Direct numerical simulations(DNS) were performed for the prediction of transient buoyant jet diffusion flames where the Froude numbers(Fr) are 5 and 160, respectively. The thermodynamic and transport properties were evaluated using CHEMKIN package to enhance the prediction performance of the DNS code. The simulated buoyant jet diffusion flame of Fr=5 and 160 showed the transient, dynamic motion well. It was identified that the buoyant jet flames were flickered periodically, and the simulated flickering frequency of the jet diffusion flame of Fr=5 was 12.5Hz, which was in good agreement with the experimental results. The flamelet structures of the buoyant jet diffusion flames could be well understood by comparing the scalar dissipation rates(SDR) and the heat release rates(HRR) of the flames. It was found that the SDR was strongly coupled with the HRR in the buoyant jet diffusion flames.

넓은 당량비 구간에서 수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 층류연소속도에 관한 연구 (A study on the laminar burning velocity according to the H2 content variation in a large range of equivalence ratio of syngas(H2/CO)-air premixed flames)

  • 정병규;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.215-218
    • /
    • 2012
  • In this study, syngas laminar burning velocities with various hydrogen contents were studied using both experimental measurements and kinetic simulations. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including burning velocities were made using CHEMKIN Package with USC-Mech II. A large range of syngas mixture compositions such as 10:90%, 25:75%, 50:50%, 75:25% and equivalence ratio from lean condition of 0.5 to rich condition of 5.0 have been conducted. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increasing of $H_2$ content although the flame speed of hydrogen is faster about ten times than carbon monoxide. This phenomenon is attributed to the rapid production of the hydrogen related radicals such as H and OH at the early stage of combustion, which is confirmed the linear increasing of radical concentrations on kinetic simulation.

  • PDF

SNG/공기 화염의 층류 연소속도 측정 - 분젠과 구형 화염법 비교 - (Laminar Burning Velocity Measurement of SNG/Air Flames - A Comparison of Bunsen and Spherical Flame Method -)

  • 김동찬;이기만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.737-746
    • /
    • 2016
  • This article describes a comparison on laminar burning velocity measured by Bunsen and spherical flame methods of synthetic natural gas (SNG) with various composition of hydrogen. In this study, the laminar burning velocity measurements were employed by Bunsen burner and cylindrical constant combustor at which flame images were captured by Schlieren system. These results were also compared with numerical based on CHEMKIN package with GRI 3.0, USC-II and UC Sandiego mechanism. In case of spherical flames, the suitable flame radius range and theoretical models were verified using the well-known previous results in methane/air flames. As an experimental condition, hydrogen content of SNG was adjusted 0% to 11%. Equivalence ratios of Bunsen flames were adjusted from 0.8 to 1.6. On the other hand, those of spherical flames were adjusted from 0.6 to 1.4, relatively. From results of this study, the both laminar burning velocities measured in Bunsen and spherical flame methods were resulted in similar tendency. As the hydrogen content increased, the laminar burning velocity also increased collectively. Laminar burning velocity of measured SNG-air flames was best coincided with GRI 3.0 mechanism by comparison of reaction mechanisms.