• Title/Summary/Keyword: CGH(computer generated hologram)

Search Result 116, Processing Time 0.023 seconds

Optical Encryption System using a Computer Generated Hologram

  • Kim, Jong-Yun;Park, Se-Joon;Kim, Soo-Joong;Doh, Yang-Hoi;Kim, Cheol-Su
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2000
  • A new image encoding and identification scheme is proposed for security verification by us-ing a CGH(computer generated hologram), random phase mask, and a correlation technique. The encrypted image, which is attached to the security product, is made by multiplying a QP- CGH(quadratic phase CGI) with a random phase function. The random phase function plays a key role when the encrypted image is decrypted. The encrypted image can be optically recovered by a 2-f imaging system and automatically verified for personal identification by a 4-f correlation system. Simulation results show the proposed method can be used for both the reconstruction of an original image and the recognition of an encrypted image.

Real-Virtual Fusion Hologram Generation System using RGB-Depth Camera (RGB-Depth 카메라를 이용한 현실-가상 융합 홀로그램 생성 시스템)

  • Song, Joongseok;Park, Jungsik;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.866-876
    • /
    • 2014
  • Generating of digital hologram of video contents with computer graphics(CG) requires natural fusion of 3D information between real and virtual. In this paper, we propose the system which can fuse real-virtual 3D information naturally and fast generate the digital hologram of fused results using multiple-GPUs based computer-generated-hologram(CGH) computing part. The system calculates camera projection matrix of RGB-Depth camera, and estimates the 3D information of virtual object. The 3D information of virtual object from projection matrix and real space are transmitted to Z buffer, which can fuse the 3D information, naturally. The fused result in Z buffer is transmitted to multiple-GPUs based CGH computing part. In this part, the digital hologram of fused result can be calculated fast. In experiment, the 3D information of virtual object from proposed system has the mean relative error(MRE) about 0.5138% in relation to real 3D information. In other words, it has the about 99% high-accuracy. In addition, we verify that proposed system can fast generate the digital hologram of fused result by using multiple GPUs based CGH calculation.

Quality Analysis on Computer Generated Hologram Depending on the Precision on Diffraction Computation (회절연산 정밀도에 따른 CGH 기반 홀로그램 생성 품질 분석)

  • Jaehong Lee;Duksu Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.21-30
    • /
    • 2023
  • Computer-generated holography requires much more computation costs and memory space rather than image processing. We implemented the diffraction calculation with low-precision and mixed-precision floating point numbers and compared the processing time and quality of the hologram with various precision. We compared diffraction quality with double, single and bfloat16 precision. bfloat16 shows 5.94x and 1.52x times faster performance than double precision and single precision. Also, bfloat16 shows lower PSNR and SSIM and higher MSE than other precision. However, there is no significant effect on reconstructed images. These results show low precision, like bfloat16, can be utilized for computer-generated holography.

Impovement of Image Reconstruction from Kinoform using Error-Diffusion Method

  • Fujita, Yuta;Tanaka, Ken-Ichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.638-643
    • /
    • 2009
  • A computer-generated hologram(CGH) is made for three-dimensional image reconstruction of a virtual object which is a difficult to irradiate the laser light directly. One of the adverse effect factors is quantization of wave front computed by program when a computer-generated hologram is made. Amplitude element is not considered in Kinoform, it needs processing to reduce noise or false image. So several investigation was reported that the improvement of reconstructed image of Kinoform. Means to calculate the most suitable complex amplitude distribution are iterative algorithm, simulated annealing algorithm and genetic Algorithm. Error diffusion method reconstructed to separate the object as for the noise that originated in the quantization error. So it is efficient method to obtain high quality image with not many processing.

  • PDF

Digital Hologram Contents Manipulation and Synthesis (디지털 홀로그램 콘텐츠의 저작 및 합성)

  • Hong, Ki-Sung;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • This paper is to propose a method to obtain a new digital hologram content, a high value-added digital content, by manipulating one or more existing digital hologram contents or depth informations. For the depth informations, we use both the ones converted from disparities by stereo matching and the ones taken by time-of-flight (TOF) depth cameras. For them, we analyze the properties and their differences for the two kinds of depth informations and propose a conversion method to homogenize them. By using them, we propose a method to convert and synthesize the depth informations to calculate a new CGH. Also, we propose a method to get a new digital hologram content by synthesizing the digital holograms themselves according to their linearity. The proposed methods are experimented with various depth informations and digital holograms to show that they are very effective as the manipulating methods for digital hologram contents.

Image Security and Personal Identification using CGH and Phase Mask (CGH와 위상 마스크를 이용한 영상 보안 및 개인 인증)

  • 김종윤;박세준;김종찬;김철수;조웅호;김수중
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.958-961
    • /
    • 1999
  • A new image encoding and identification scheme is proposed for security verification by using CGH(computer generated hologram), random phase mask, and correlation technique. The encrypted image, which is attached to the security product, is made by multiplying QPH(quadratic phase hologram) using SA(simulated annealing) algorithm with a random phase function. The random phase function plays a role of key when the encrypted image is decrypted. The encrypted image could be optically recovered by 2-f system and automatically verified for personal identification. Simulation results show the proposed method cand be used for the reconstruction and the recognition of the encrypted. Image.

  • PDF

Virtual View-point Depth Image Synthesis System for CGH (CGH를 위한 가상시점 깊이영상 합성 시스템)

  • Kim, Taek-Beom;Ko, Min-Soo;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1477-1486
    • /
    • 2012
  • In this paper, we propose Multi-view CGH Making System using method of generation of virtual view-point depth image. We acquire reliable depth image using TOF depth camera. We extract parameters of reference-view cameras. Once the position of camera of virtual view-point is defined, select optimal reference-view cameras considering position of it and distance between it and virtual view-point camera. Setting a reference-view camera whose position is reverse of primary reference-view camera as sub reference-view, we generate depth image of virtual view-point. And we compensate occlusion boundaries of virtual view-point depth image using depth image of sub reference-view. In this step, remaining hole boundaries are compensated with minimum values of neighborhood. And then, we generate final depth image of virtual view-point. Finally, using result of depth image from these steps, we generate CGH. The experimental results show that the proposed algorithm performs much better than conventional algorithms.

A New System Implementation for Generating Holographic Video using Natural Color Scene (실사 컬러 영상을 이용한 홀로그램 비디오 생성 시스템 구현)

  • Seo, Youngho;Lee, Yoon-Hyuk;Koo, Ja-Myung;Kim, Woo-Youl;Kim, Bo-Ra;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.149-158
    • /
    • 2013
  • In this paper, we propose a new system which can generate digital holograms for natural color scene. The system consists of both a camera system for capturing images and softwares(SWs) for various image processings. The camera system uses a vertical rig with a depth and a RGB camera and a cold mirror which has the different transmittance according to wavelength for obtaining images with the same view point. The S/W is composed by the engines for processing and servicing the captured images and computer-generated hologram (CGH) for generating digital holograms using general-purpose computing on graphics processing unit (GPGPU). Each algorithm was implemented using C/C++ and CUDA languages, and all engines were integrated in LabView environment. The proposed system can generate 10 digital holographic frames per second using about 6K light sources.

Fast Computation Algorithm of Fresnel Holograms Using Recursive Addition Method (반복 가산 기법을 이용한 Fresnel 홀로그램의 고속 계산 알고리듬)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.386-394
    • /
    • 2008
  • For digital holographic video system, it is important to generate digital hologram as fast as possible. This paper proposed a fixed-point method and fast generation method that can calculate the Fresnel hologram using operation of whole-coordinate recursive addition. To compute the digital hologram, 3D object is assumed to be a collection of depth-map point generated using a PC. Our algorithm can compute a phase on a hologram by recursive addition with fixed-point format at a high speed. When we operated this algorithm on a personal computer, we could maximally compute digital hologram about 70% faster than conventional method and about 30% faster than of [3]'s method.

A Study on the Angular Characteristics of Photopolymer-based Hologram Recording and Reproducing Light

  • Kwang-pyo, Hong;Jiwoon, Lee;Lee-hwan, Hwang;Soon-chul, Kwon;Seunghyun, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.460-469
    • /
    • 2022
  • Increasing interest in the metaverse world these days, interest in realistic content such as 3D displays is growing. In particular, hologram images seen in movies provide viewers with an immersive display that cannot be seen in conventional 2D images. Since the first discovery of holography by Dennis Gabor in 1948, this technology has developed rapidly. Spatially, this beginning of technology like Optical hologram called analog hologram and Digital hologram such as computer-generated hologram (CGH). In analog and digital holograms, a recording angle and a recording wavelength are having important role when reproducing and display hologram. In the hologram, diffraction of light causes by unexpected formed by the synthesis from interference with object and reference light. When recording, the incident light information and mismatched reproduction light reconstruct the hologram in an undesirable direction. Reproduction light that is out of sync with incident light information with initial condition of recording will cause reconstructed image in an undesirable direction. Therefore, we analyze the holographic interference pattern generated by hologram recording in volume holograms using photopolymer and analyze the characteristics that vary depending on the angle of the reproduced light. This is expected to be used as a basic research on various holographic application that may cause as holograms are applied to industries in the future.