• Title/Summary/Keyword: CFX Analysis

Search Result 306, Processing Time 0.032 seconds

Development of a High-efficiency and Low-noise Axial Flow Fan through Combining FanDAS and CFX codes (FanDAS-CFX 결합을 통한 고효율-저소음 축류 송풍기의 개발)

  • Lee, Chan;Kil, Hyun Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.37-41
    • /
    • 2012
  • High-efficiency and low-noise axial flow fan is developed by combining the FanDAS, a computerized axial fan design/performance analysis system, and CFD software(CFX). Based on fan design requirements, FanDAS conducts 3-D blade geometry design, quasi-3D flow/ performance analyses and noise evaluation by using through-flow analysis method and noise models for discrete frequency and broadband noise sources. Through the parametric studies of fan design variables using FandDAS, preliminary and baseline design is achieved for high efficiency and low noise fan, and then can be coupled with a CFD technique such as the CFX code for constructing final and optimized fan design. The FanDAS-CFX coupled system and its design procedure are applied to actual fan development practice. The FanDAS provides an optimized 3-D fan blade geometry, and its predictions on the performance and the noise level of designed fan are well agreed with actual test results.

Identification of hydrogen flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes

  • Jeon, Joongoo;Kim, Yeon Soo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1939-1950
    • /
    • 2019
  • The MELCOR code useful for a plant-specific hydrogen risk analysis has inevitable limitations in prediction of a turbulent flow of a hydrogen mixture. To investigate the accuracy of the hydrogen risk analysis by the MELCOR code, results for the turbulent gas behavior at pipe rupture accident were compared with CFX results which were verified by the American National Standard Institute (ANSI) model. The postulated accident scenario was selected to be surge line failure induced by station blackout of an Optimized Power Reactor 1000 MWe (OPR1000). When the surge line failure occurred, the flow out of the surgeline was strongly turbulent, from which the MELCOR code predicted that a substantial amount of hydrogen could be released. Nevertheless, the results indicated nonflammable mixtures owing to the high steam concentration released before the failure. On the other hand, the CFX code solving the three-dimensional fluid dynamics by incorporating the turbulence closure model predicted that the flammable area continuously existed at the jet interface even in the rising hydrogen mixtures. In conclusion, this study confirmed that the MELCOR code, which has limitations in turbulence analysis, could underestimate the existence of local combustible gas at pipe rupture accident. This clear comparison between two codes can contribute to establishing a guideline for computational hydrogen risk analysis.

Study on the Performance Deterioration of Erosion-corrosion Damaged Automotive Water Pump (침식 마모 손상된 차량용 워터펌프의 성능저하 연구)

  • Jeon, Seung-Won;Park, Chan-Seong;Kim, Yoon-Ho;Lee, Kyu-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • A flow analysis for the erosion-corrosion damaged automotive water pump which causes vehicle fire is numerically performed using the CFX program, computational fluid dynamics (CFD) code. The blade bending deformation and the blade clearance enlargement are considered in the analysis of performance reduction. For the cavitation analysis, the homogeneous multi phase model is adopted using the Ralyleigh-Plesset model for the rate equation controlling vapor generation and condensation.

An Advanced Method for Behavior-Characteristics Analysis of Diesel Fuel Spray

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • In order to control emissions from engine, it is necessary to understand the mixture formation process of diesel spray. In this study, analysis of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray under a high temperature and pressure was performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the Exciplex Fluorescence Method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT), and then injection pressure was selected as an analysis parameter. Consequently, it was found that the experimental results and the numerical results are consistent with each other, and then in order to investigate the behavior characteristics of evaporative diesel spray, the effectiveness of the use of CFX of commercial code is definitely validated.

Comparative Study of Commercial CFD Software Performance for Prediction of Reactor Internal Flow (원자로 내부유동 예측을 위한 상용 전산유체역학 소프트웨어 성능 비교 연구)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1175-1183
    • /
    • 2013
  • Even if some CFD software developers and its users think that a state-of-the-art CFD software can be used to reasonably solve at least single-phase nuclear reactor safety problems, there remain limitations and uncertainties in the calculation result. From a regulatory perspective, the Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of commercial CFD software for nuclear reactor safety problems. In this study, to examine the prediction performance of commercial CFD software with the porous model in the analysis of the scale-down APR (Advanced Power Reactor Plus) internal flow, a simulation was conducted with the on-board numerical models in ANSYS CFX R.14 and FLUENT R.14. It was concluded that depending on the CFD software, the internal flow distribution of the scale-down APR was locally somewhat different. Although there was a limitation in estimating the prediction performance of the commercial CFD software owing to the limited amount of measured data, CFX R.14 showed more reasonable prediction results in comparison with FLUENT R.14. Meanwhile, owing to the difference in discretization methodology, FLUENT R.14 required more computational memory than CFX R.14 for the same grid system. Therefore, the CFD software suitable to the available computational resource should be selected for massively parallel computations.

The Analysis of Electroglottographic Measures from Lx Speech Studio Program in Patients with Vocal Nodules (Lx Speech Studio를 이용한 성대결절환자의 전기성문파형 측정치 분석)

  • 이성은;임성은;최성희;표화영;최재남;최홍식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2003
  • The purpose of this study is to analyze the EGG measures from Lx Speech Studio program (Laryngograph Ltd, UK) in patient with vocal nodule. Thirty female adults (15 patient with vocal nodule, 15 normal speaker) produced sustained vowel and read the passage. They were grouped into three groups based on Grade (GRBAS) : normal-G0, nodule-Gl, nodule-G2. Estimates of Fx (Hz), Qx(%), Jitter, Shimmer, and HNR were made from a 500msec midportion of vowel. In addition, DFx(Hz), DQx(%), CFx(%) and CAx(%) were obtained from reading the passage. These data were compared among groups. The results were as follow Jitter, Shimmer, HNR were significantly higher in nodule-G2 group than in normal-G0 & patient-Gl group. In nodule-G2 group, CFx and CAx from reading passage were significantly higher. For patients with nodule, asymmetry or irregularity were observed in graphs of QxFx & CFx provided by Quantitative Analysis.

  • PDF

CFD Analysis of EFD-CFD Workshop Case 3 using Commercial and Open Source CFD codes (상용 및 오픈소스 CFD 코드를 이용한 EFD-CFD 워크샵 Case 3 해석)

  • Kim, Jong Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.241-251
    • /
    • 2017
  • Computational fluid dynamics analysis was performed for the case 3 of the EFD-CFD workshop. Solvers were used for three commercial CFD codes(Star-CCM+, Fluent and CFX) and an open source CFD code(SU2). The grid were generated four types depending on the total cells using commercial grid generation code(Pointwise). Mach number of 0.4 and 0.8, 2 degree angle of attack and Mach number of 0.9, 1 degree angle of attack were calculated. Similar pressure coefficient curve and normal force coefficient were showed from the coarse grid to fine grid of four codes. But there is a difference in the drag coefficient. The position of the shock wave was predicted forward as the discretization order increased in calculations using Star-CCM+ and Fluent. The computation time to converge, Fluent, Star-CCM +, CFX are in order, and SU2 takes much time to converge.

A Study on the Performance Analysis of an Industrial Centrifugal Pump Using CFX Code (CFX 코드에 의한 산업용 원심펌프 성능해석에 관한 연구)

  • Kim, Myung-Seok;Kim, Beom-Seok;Kim, Jin-Gu;Park, Kwon-Ha;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.174-175
    • /
    • 2005
  • The purpose of this study is focused on the analysis of 3D complex flow and performance characteristics of a centrifugal pump with volute casing. The numerical analysis was performed by commercial code CFX-10 according to the variation of flow rate, which is changing from 5.847$m^3$/min to 6.865$m^3$/min. The rated rotational speed of close type impeller is 1750rpm. Turbulence model, k-${\omega}$ SST was selected to guaranty more accurate prediction of flow separation. The ICEM-CFD 10, reliable grid generation software was also adapted to secure high quality grid generation necessary for the reliable numerical simulation. The experimental results such as static head, brake horse power and efficiency of the centrifugal pump were compared with the numerical analysis results. The simulated results are good agreement with the experimental results less 5$%$ error.

  • PDF

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.