• Title/Summary/Keyword: CFX 11

Search Result 73, Processing Time 0.03 seconds

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Rectangular Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 사각 유로를 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Kuen;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.512-519
    • /
    • 2009
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental data. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap was performed. Auto correlation for the axial-flow velocity pattern was presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

Design of Impeller and Diffuser for Mixed Flow Pump with Inverse Design Method (역설계 방법을 적용한 사류펌프의 임펠러 및 디퓨저 설계)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Kim, Jun-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1322-1325
    • /
    • 2009
  • The impeller and vane diffuser for the mixed flow pump(NS550) was designed by using meridional selection program and inverse design method. We decided the meridional shape of the impeller from the meridional design parameter, such as the specific speed and maximum diameter at the impeller exit. The meridional shape of vane diffuser was set from the impeller shape, distribution of cross sectional area and maximum diffuser diameter. The angle of impeller blade and diffuser vane was designed by using inverse design method. The predicted overall performance by using commercial CFD code(ANSYS CFX-11) shown good agreement with design goals.

  • PDF

Heat Transfer and Fluid Flow Evaluation of Microchannel Waterblock with Pass Variations (패스변화에 따른 워터블록의 열전달 및 유동특성 평가)

  • Choi, Jin-Tae;Kwon, Oh-Kyung;Choi, Mi-Jin;Yun, Jae-Ho;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1135-1140
    • /
    • 2009
  • The present study has been studied on a thermal and flow characteristic of the microchannel waterblock with pass variations in 8 samples. Results of a numerical analysis using the CFX-11 were compared with results of an experiment. Numerical analysis and experiment were conducted under an input power of 150 W, inlet temperature of $35^{\circ}C$ and mass flow rates of $0.7{\sim}2.0\;kg/min$. The numerical results showed reasonably good agreement with the experimental results within about $3{\sim}5%$. Also, the numerical results showed that the sample 2 types with the 2 pass gave better performance than the sample 1 types with the 1 pass from the viewpoints of heat transfer and pressure drop.

  • PDF

A Study of Wall Shape Design for Cascade Experiment (케스케이드 실험을 위한 벽면형상 설계에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Kim, Chae-Sil;Cho, Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.148-151
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

  • PDF

Numerical Study on Three-Dimensional Flow in a Mixed-Flow Pump for Irrigation and Drainage (양배수용 사류펌프 내 삼차원 유동에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Ahn, Hyoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • In this paper, numerical study on a mixed-flow pump for irrigation and drainage has been performed based on three-dimensional viscous flow analysis. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations and solved by the commercial CFD code ANSYS CFX-11.0. A structured grid system is constructed in the computational domain, which has O-type grids near the blade surfaces and H/J-type grids in other regions. The numerical results were validated with experimental data for the heads and efficiencies at different flow coefficients. The efficiency at the design flow coefficient is evaluated with the variation of two geometric variables related to area of discharge and length of the vane in the diffuser. The results show that efficiency of the mixed-flow pump at the design flow coefficient is improved by the modifications of the geometry.

FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER (고압 이단 링블로워의 삼차원 유동해석 및 성능평가)

  • Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.85-89
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the mid-plane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

Performance of a Shell-and-Tube Heat Exchanger with Spiral Baffle Plates

  • Son, Yeong-Seok;Sin, Ji-Yeong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1555-1562
    • /
    • 2001
  • In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions . Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer.

  • PDF

A Study on Design of Nozzle Tip for Airless Spray Coating (에어리스 스프레이 도장용 노즐 팁 설계에 관한 연구)

  • Kim, Dong-Keon;Kim, Soon-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-188
    • /
    • 2012
  • This study was carried out to design the spray nozzle tip for airless spray coating. Airless spray coating is the process of coating an object with a liquid spray of paint or other fluid. The nozzle tip controls the fluid flow rate and creates back pressure in the system. The nozzle tip also defines the spray pattern by the size and shape of the orifice. The spray pattern of nozzle tip was investigated numerically using ANSYS CFX ver. 14.0. It was observed that performance result of designed nozzle tip was correspond well, compared with that of GARCO nozzle tip.

A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate (이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구)

  • Lee, Jong-Seok;Kim, Dong-Keon;Kim, Moon-Kyung;Yoon, Soon-Hyun;Kim, Bong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 두 채널을 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Hong, Seong-Ho;Shin, Jong-Kuen;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2810-2815
    • /
    • 2008
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental result. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap is presented. Auto and cross correlation for the axial-flow velocity pattern are presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

  • PDF