• Title/Summary/Keyword: CFRP strip

Search Result 41, Processing Time 0.023 seconds

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Long-Term Behavior of CFRP Strips under Sustained Loads (지속하중을 받는 탄소섬유판의 장기 거동)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • Experimental study was performed to evaluate the long-term behavior of CFRP (carbon fiber reinforced polymer) strips under sustained loads including prestressing force in strengthening RC members with post-tensioned CFRP strips. Two types of CFRP strip such as unidirectional CFRP strip and hybrid CFRP strip which is composed of carbon fiber and steel plate were considered. Also two types of loading scheme were included in this study. Direct sustained loading test had been carried out to estimate the creep deformation and relaxation of CFRP strips including slip deformation at both mechanical anchorages for over 700 days. Also, flexural sustained loading test had been conducted to estimate the initial prestress losses on clamping the CFRP strips at jacking anchorages for over 90 days. From the sustained loading tests, it was observed that stress losses of unidirectional CFRP strips due to the creep deformation and relaxation of material itself and slip deformation at mechanical anchorage were ignorable. On the other hand, significant stress losses caused by the yielding of steel embedded in CFRP strips were found in case of hybrid CFRP strips due to the initial jacking force over steel yielding stress. Also, initial prestress losses during setting of CFRP strips on mechanical anchorage were about 10% of intial jacking force, which must be considered in the design.

Assessment of Flexural Strengthening Behavior Using the Stirrup-Cutting Near Surface Mounted(CNSM) CFRP strip (스터럽 절단 탄소섬유판 표면매립공법의 휨 보강 성능 평가)

  • Moon, Do Young;Oh, Hong Seob;Zi, Goang Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.102-112
    • /
    • 2012
  • Recently, the near surface mounted (NSM) FRP strengthening technique has been actively applied to deteriorated concrete structures for rehabilitation purposes. However, the use of this conventional NSM technique could be restricted due to the insufficient height or strength of the concrete cover. In this study, the stirrup-Cutting Near Surface Mounted(CNSM) technique was considered as an alternative, whereby NSM strips are placed at a deeper level, namely at the level of the main steel reinforcement. A flexural test of a concrete beam strengthened with CNSM technique was performed and the results were then compared to those for a concrete beam strengthened by the conventional NSM technique. The embedment length of the CFRP strips was varied in order to increase the effect of the anchoring depth of the NSM and CNSM CFRP strips in the beam specimens. From the results of the test, the beam with the CNSM CFRP strip showed typical structural behavior similar to that of the beam with the NSM CFRP strip. Moreover, there was no apparent structural degradation resulting from the stirrup partial-cutting. Consequently, the CNSM strengthening technique can be suitably utilized for extensively damaged concrete structures where it is difficult to apply the conventional NSM technique.

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.

Post-tensioning System with Externally Bonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.155-163
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally bonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips. Specimens consist of 9 small-scaled specimens with the different post-tensioning level as a main test parameter. A control specimen and specimens with simply bonded CFRP strips have been manufactured to compare the structural performances of prestressed system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned CFRP strips reached the rupture strength of the CFRP strip. The cracking and yielding loads were also increased proportionally to the post-tensioning level, but the ultimate loads were nearly equal regardless of the post-tensioning level.

Post-tensioning System with Externally Unbonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 비부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.147-154
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally unbonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips using embedded or stud-type plate anchorages. Total 10 small-scaled specimens were manufactured with the different post-tensioning level and types of mechanical anchorage as a main test parameter. A control specimen and specimens with simply bonded CFRP strips were included to compare the structural performances of each system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned unbonded CFRP strips reached the rupture strength of the CFRP strip. Also, it was observed that the specimens with stud-type anchorage have equivalent strengthening performance compared with embedded-type anchorage.

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Gemi, Lokman;Alsdudi, Mohammed;Aksoylu, Ceyhun;Yazman, Sakir;Ozkilic, Yasin Onuralp;Arslan, Musa Hakan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.735-757
    • /
    • 2022
  • The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Shear Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판(CFRP Strip)으로 보강된 철근콘크리트 부재의 전단거동)

  • Lim, Dong-Hwan;Park, Sung-Hwan;Kim, Yong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.161-164
    • /
    • 2006
  • Carbon fiber reinforced polymer(CFRP) strips have superior mechanical and chemical properties in comparison with conventional materials. The purpose of this study is to investigate the mechanical shear behavior of concrete structures strengthened by CFRP strips A total of 15 concrete members were made and tested. Shear span to depth ratio(a/d) and the spacing of CFRP stripswere selected as major test variables. From test results, it isshown that shear strengthening with CFRP strips can increase the first shear strength and ultimate shear strength of concrete members significantly. And the brittle shear failure mode can be changed to a ductile failure mode by CFRP strips.

  • PDF

Nonlinear finite element analysis of RC beams strengthened with CFRP strip against shear

  • Bulut, Nalan;Anil, Ozgur;Belgin, Cagatay M.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.717-733
    • /
    • 2011
  • Strengthening of reinforced concrete (RC) members against shear that is one of the failure modes especially avoided by using carbon fiber reinforced polymer (CFRP) is widely used technique, which is studied at many experimental studies. However, conducting experimental studies are required more financial resources and laboratory facilities. In addition, along with financial resources, more time is needed in order to carry out comprehensive experimental studies. For these reasons, a verified finite element model that is tested with previous experimental studies can be used for reaching generalized results and investigating parameters that are not studied. For this purpose, previous experimental study results are used and "T" cross-sectioned RC beams strengthened with CFRP strips with insufficient shear strength are modeled by using ANSYS software. First, finite elements modeling of the previously tested RC beams are done, and then the computed results are compared with the experimental ones whether they are matched or not. As a result, the finite element model is verified. Later, analyses of the cases without any test results are done by using the verified model. Optimum CFRP strip spacing is determined with this verified finite element model, and compared with the experimental findings.

Strain distribution between CFRP strip and concrete at strengthened RC beam against shear

  • Anil, Ozgur;Bulut, Nalan;Ayhan, Murat
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.509-525
    • /
    • 2012
  • In recent years, CFRP material usage in strengthening applications gradually became widespread. Especially, the studies on the strengthening of shear deficient reinforced concrete beams with CFRP strips are chosen as a subject to numerous experimental studies and research on this subject are increased rapidly. The most important variable, that is affected on the failure mode of CFRP strips and that is needed for determining the shear capacity of the strengthened reinforced concrete beams, is the strain distribution between CFRP strips and concrete. Numerous experimental studies are encountered in the literature about the determination of strain distribution between CFRP strips and concrete. However, these studies mainly focused on the CFRP strips under axial tension. There are very limited numbers of experimental and analytic studies examining the strain distribution between concrete and CFRP strips, which are under combined stresses due to the effects of shear force and bending moment. For this reason, existing experimental study in the literature is used as model for ANSYS finite element software. Nonlinear finite element analysis of RC beams strengthened against shear with CFRP strips under reverse cyclic loading is performed. The strain distributions between CFRP strips and concrete that is obtained from finite element analysis are compared with the results of experimental measurements. It is seen that the experimental results are consisted with the results derived from the finite element analysis and important findings on the strain distribution profile are reached by obtaining strain values of many points using finite element method.