• Title/Summary/Keyword: CFRP sheets

Search Result 139, Processing Time 0.028 seconds

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.

Effect of Surface Roughness of Al5052/CFRP Composites on the Adhesion and Mechanical Properties (Al5052/CFRP 복합소재의 표면특성이 접착성과 기계적특성에 미치는 영향)

  • Lee, Min-Sik;Kim, Hyun-Ho;Kang, Chung-Gil
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.295-302
    • /
    • 2013
  • In this study, Al5052/CFRP composites were fabricated for an automobile component by compression molding process inside a U-channel mold. Al5052 sheet were treated by sand blasting with two different particle sizes. Accordingly, surface roughness (Ra) values of $4.25{\mu}m$ and $1.85{\mu}m$ were obtained for the treated Al5052 sheets. The effect of surface roughness of Al5052 sheets on the adhesion and mechanical properties of Al5052/CFRP composites have been evaluated. Shear lap test and 3-point bending test were conducted. Results showed that the shear load for the composite fabricated by using the treated Al5052 sheets with Ra value of $1.85{\mu}m$ and $4.25{\mu}m$ were 3 and 5 times higher than Ra value of $0.73{\mu}m$ of the composite fabricated by using the untreated sheet. The bending stress of 200MPa was obtained for the composite fabricated with untreated Al5052 sheets. The bending stress increased to 400MPa when the composite fabricated from treated sheets. However, the bending stress was not influenced by treating condition through sand blasting.

Behavior of damaged and undamaged concrete strengthened by carbon fiber composite sheets

  • Ilki, Alper;Kumbasar, Nahit
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.75-90
    • /
    • 2002
  • Many existing concrete structures suffer from low quality of concrete and inadequate confinement reinforcement. These deficiencies cause low strength and ductility. Wrapping concrete by carbon fiber reinforced polymer (CFRP) composite sheets enhances compressive strength and deformability. In this study, the effects of the thickness of the CFRP composite wraps on the behavior of concrete are investigated experimentally. Both monotonic and repeated compressive loads are considered during the tests, which are carried out on strengthened undamaged specimens, as well as the specimens, which were tested and damaged priorly and strengthened after repairing. The experimental data shows that, external confinement of concrete by CFRP composite sheets improves both compressive strength and deformability of concrete significantly as a function of the thickness of the CFRP composite wraps around concrete. Empirical equations are also proposed for compressive strength and ultimate axial deformation of FRP composite wrapped concrete. Test results available in the literature, as well as the experimental results presented in this paper, are compared with the analytical results predicted by the proposed equations.

Strengthening Effect of R/C Beams with different Strengthening Level

  • Park, Sang-Yeol;Park, Jeong-Won;Min, Chang-Shik
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.113-120
    • /
    • 2000
  • This paper presents the behavior and strengthening effect of reinforced concrete rectangular beams strengthened using CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The strengthened beams were stiffer than the control beam before and after reinforcement yielding. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to the strengthening level. The averaged horizontal shear stress of concrete at the interface ranges between (equation omitted) and (equation omitted) (in kg/$\textrm{cm}^2$) depending on strengthening level.

  • PDF

Strength Analysis of Joint Between Steel Plate and CFRP Laminated Splice Plates Patched by Adhesive (접착제를 사용한 CFRP와 강재 이음부의 강도 해석)

  • Park, Dae-Yong;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.

Concentrated Axial Loading Test for Slender Square Hollow Section Retrofitted by Carbon Fiber Reinforced Polymer Sheets(CFRP Sheets) (탄소섬유쉬트(CFRP Sheets)로 보강된 세장한 각형강관기둥의 중심축하중실험)

  • Park, Jai Woo;Choi, Sun Kyu;Choi, Sung Mo;Song, Dong Yub;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.735-742
    • /
    • 2012
  • This paper presents the experimental results of axially loaded stub columns of slender steel hollow square section(SHS) strengthened with carbon fiber reinforced polymers(CFRP) sheets. 6 specimens were fabricated and the main parameters were: width-thickness ratio(b/t) and CFRP retrofitting. From the tests, it was observed that two sides would typically buckle outward and the other two sides would buckle inward. A maximum increase of 33% was achieved in axial-load capacity. Also, stiffness and ductility index(DI) were compared between unretrofitted specimens and retrofitted specimens. In the last section, a prediction formula of the ultimate strength developed using the experimental results is presented.

Bond-Slip Model of Interface between CFRP Sheets and Concrete Beams Strengthened with CFRP (탄소섬유시트로 보강된 콘크리트보의 경계면 부착-슬립모델)

  • Kim, Sung-Bae;Kim, Jang-Ho Tay;Nam, Jin-Won;Kang, Suk-Hwa;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.477-486
    • /
    • 2008
  • External bonding of carbon fiber reinforced plastic sheets has recently emerged as a popular method for strengthening reinforced concrete structures. The behavior of CFRP-strengthened RC structure is often controlled by the behavior of the interface between CFRP sheets and concrete. In this study, a review of models on bond strength, bond-slip, and interfacial stresses has been first carried out. Then a new bond-slip model is proposed. The proposed bond-slip model has bilinear ascending regions and exponential descending region derived from modifications mode on the conventional bilinear bond-slip model. The comparison of the results with those of existing experiment researches on bond-slip models indicate good agreements.

Effect of Steel Reinforcement Ratio on the Flexural Behavior of RC Beams Strengthened with CFRP Sheets (탄소섬유쉬트로 보강된 RC부재의 철근량에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • Experimental study has been performed in order to evaluate the effects of steel reinforcement ratio on the flexural behavior of RC beams strengthened with CFRP sheets. The steel reinforcement ratio of $0.78%({\rho}_s/{\rho}_b=24%)$ is selected to have balance failure when control RC beams were strengthened with 1 ply CFRP sheet. Total 6 half-scale specimens were manufactured including each unstrengthened specimens, which have 3 different reinforcement ratios. The specimens strengthened with CFRP sheet consist of under- or over-reinforced beams for the balanced failure condition. Moreover, the behavior of un strengthened or strengthened beams were compared to evaluate flexural performance. The results of this study show that the over-reinforced specimens were failed by concrete crushing prior to CFRP sheet failure by debonding or rupture. On the contrary, the under-reinforced specimen were failed by rupture of CFRP sheet.

  • PDF

CFRP strengthening of steel columns subjected to eccentric compression loading

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Steel structures often require strengthening due to the increasing life loads, or repair caused by corrosion or fatigue cracking. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials used to strengthen steel structures. Most studies on strengthening steel structures have been carried out on steel beams and steel columns under centric compression load. No independent article, to the author's knowledge, has studied the effect of CFRP strengthening on steel columns under eccentric compression load, and it seems that there is a lack of understanding on behavior of CFRP strengthening on steel columns under eccentric compression load. However, this study explored the use of adhesively bonded CFRP flexible sheets on retrofitting square hollow section (SHS) steel columns under the eccentric compression load, using numerical investigations. Finite Element Method (FEM) was employed for modeling. To determine ultimate load of SHS steel columns, eight specimens with two types of section (Type A and B), strengthened using CFRP sheets, were analyzed under different coverage lengths, the number of layers, and the location of CFRP composites. Two specimens were analyzed without strengthening (control) to determine the increasing rate of the ultimate load in strengthened steel columns. ANSYS was used to analyze the SHS steel columns. The results showed that the CFRP composite had no similar effect on the slender and stocky SHS steel columns. The results also showed that the coverage length, the number of layers, and the location of CFRP composites were effective in increasing the ultimate load of the SHS steel columns.

Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet

  • Park, Jai-woo;Yoo, Jung-han
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.441-465
    • /
    • 2015
  • This paper presents the experimental results of flexural and compression steel members strengthened with carbon fiber reinforced polymers (CFRP) sheets. In the flexural test, the five specimens were fabricated and the test parameters were the number of CFRP ply and the ratio of partial-length bonded CFRP sheets of specimen. The CFRP sheet strengthened steel beam had failure mode: CFRP sheet rupture at the mid span of steel beams. A maximum increase of 11.3% was achieved depending on the number of CFRP sheet ply and the length of CFRP sheet. In the compression test, the nine specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the length of the specimen. From the tests, for short columns it was observed that two sides would typically buckle outward and the other two sides would buckle inward. Also, for long columns, overall buckling was observed. A maximum increase of 57% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 60 transversely.