• Title/Summary/Keyword: CFRP plate

Search Result 166, Processing Time 0.028 seconds

Evaluation of Laser-based Ultrasonic Signals due to Fiber Orientation of CFRP (CFRP의 섬유강화재 배향성에 따른 레이저유도초음파 신호특성 평가)

  • Choi Sang-Woo;Lee Joon-Hyun;Byun Joon-Hyung;Seo Kyeong-Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.143-146
    • /
    • 2004
  • Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate FRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluated the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation.

  • PDF

Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates (CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가)

  • 조효남;최영민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

Flexural Behavior and Analysis of RC Beams Strengthened with Prestressed CFRP Plates (프리스트레스트 탄소섬유판으로 보강된 철근콘크리트 보의 휨 거동 및 해석)

  • Yang, Dong-Suk;Park, Jun-Myung;You, Young-Chan;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • In this paper, a total of 13 beams with bonding, anchorage system, amount of prestressing and span length as variables of experiment were tested in flexural test and analyzed in finite element analysis; one control beam, two simplified FRP-boned beams, four prestressed FRP-unbonded beams and four prestressed FRP-bonded beams. Also, a nonlinear finite element analysis of beams in the flexural test is performed by DIANA program considered material nonlinear of concrete, reinforcement and the interfacial bond-slip model between concrete and CFRP plates. The failure mode of prestressed CFRP plated-beams is not debonding but FRP rupture. RC members strengthened with external bonded prestressed CFRP plates occurred 1st and 2nd debonding of the composite material. After the debonding of CFRP plates occurs in bonded system, behavior of bonded CFRP-plated beams change into that of unbonded CFRP-plated beams due to fix of the anchorage system. Also, It was compared flexural test results and analytical results of RC members strengthened with CFRF plates. The ductility of beams strengthened by CFRP plates with the anchorage system is considered high with the ductility index of above 3. Analysis results showed a good agreement with experiment results in the debonding load, yield load and ultimate load.

Evaluation to Collision Safety Performance of Stacking Angle Different CFRP/Al Circular Member (적층각이 다른 CFRP/Al 혼성 원형부재의 충돌안전성능 평가)

  • Yang, Yong Jun;Kim, Young Nam;Cha, Cheon Seok;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2015
  • The actual condition is that environmental pollution due to the development of various industries has recently become a serious issue. An interest in improving the gas mileage is rising due to an increase in the number of vehicles in the era of high oil price in particular. In order to solve this problem, priority should be given to light-weight design of car body, However, at present, a design method enabling the conventional steel plate to be replaced is direly needed in order to guarantee passengers' safety according to excessive light-weight design of car body. In this study, in order to apply a design method that could realize fuel savings and environmental pollution prevention through an improvement in gas mileage together with meeting the safety requirements for vehicles, it was supposed that CFRP/Al composites member would be used as primary structural member. And to this end, it was intended to obtain optimum design data by experimentally implementing external impulsive load applied to the car body. According to results of impact test of CFRP/Al composites member, a collapsed shape of folding, crack, and bending occurred. So, it was possible to find that energy was observed. And in case of specimen having an angle of $90^{\circ}$ in the outermost layer and stack sequence of $[90^{\circ}{_2}/0^{\circ}2]s$, its collapsed length was shown to be short. Therefore, it was possible to find that the absorbed energy was shown to be higher by 20% or above at the maximum.

A Study on Vibration Intensity of Laminated Composite Plate (복합적층판의 진동인텐시티에 관한 연구)

  • Seo, Jin;Kim, Dong-Young;Hong, Do-Kwan;Choi, Seok-Chang;An, Chan-Woo;Han, Geun-Jo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.892-895
    • /
    • 2002
  • In this study, to grasp the effect of vibration intensity fur the laminated composite plate, the two-dimension plate was shaken by a harmonic point excitation with the natural frequency using the finite element method. As the result, it shows that the vibration intensity according to the change of angle-ply is various and it flows to the direction of length rather than width in the plate. Also this paper represents those results to the vector flow.

  • PDF

A Study on the Strength Characteristics of the Pin Jointed CFRP Composites for Cryogenic Supporting Structure (극저온 지지구조물을 위한 CFRP 적층판의 핀 체결부 강도특성 연구)

  • Her, N.I.;Kim, J.H.;Lee, Y.S.;Kim, H.K.;Bak, J.S.;Kwon, M.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.173-176
    • /
    • 2002
  • Fundamental failure mode in a laminated composite pinned joint is proposed to assess damage resulting from stress concentration in the plate. The joint area is a region with stress concentrations thus a complicated stress state exists. The modeling of damage in a laminated composite pinned joint presents many difficulties because of the complexity of the failure process. In this study, the effect on the bearing strength of the pin jointed Carbon Fiber Reinforced Plastics (CFRP) composites for magnet support structure of KSTAR tokamak with various parameters such as edge distance to diameter, width to diameter, and the temperature of $23^{\circ}C$, $-76^{\circ}C$, and $-196^{\circ}C$ was examined by comparing the experimental results with finite element analysis.

  • PDF

Fracture Characteristics of Finite-Width CFRP Plates by Acoustic Emission (AE법에 의한 유한 폭 CFRP 판재의 파괴특성)

  • Park, Sung-Oan;Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.125-132
    • /
    • 2007
  • The purpose of present paper is to investigate a fracture characteristics of the finite-width single-edge-notch(SEN) carbon fiber/epoxy reinforced plastics(CFRP) plates by using an acoustic emission(AE). Uni-directionally oriented 10 plies CFRPs specimen which had different notch length were prepared for monotonic tensile test. Matrix cracking appeared over whole testing process and fiber breaking appeared later on mainly Load distribution factor of the matrix confirmed that increased according as increases of plate width ratio. The amplitude distribution of AE signal from a specimens is an aid to the determination of the different fracture mechanism such as matrix cracking, disbonding, interfacial delamination, fiber pull-out, fiber breaking, and etc. In the result of AE amplitude distribution analysis, matrix cracking, fiber disbonding or interfacial delamination, and fiber pull-out or fiber breaking signal correspond to <65dB, <75dB, and <90dB respectively, Also, changes of the slope of cumulative AE energy represented crazing phenomena or degradation of materials.

Test on the strengthening effects and behavior of Roll beam with Stiffened carbon-plate (롤빔에 카본플레이트를 보강한 강재의 일체적거동 및 강성보강효과)

  • Sung, IkHyun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.392-399
    • /
    • 2013
  • The use of advanced composite materials in strengthening and repair of existing structures is increasing rapidly. One specific area in which the technique has been introduced lately is the strengthening of metallic structures with bonded carbon-fibre laminates. In this paper, the behaviors of composite steel-CFRP members is studied experimentally. A new type of test specimen has been developed for this purpose. By examining different combination of CFRP-laminates and adhesives, different types of fracture mode could be examined. The tested composite elements also displayed different behavior and a large difference in strength and ductility could be observed.

Flexural Behavior of RC Beams Strengthened with Near Surface Mounted Prestressed FRP (프리스트레스를 도입한 표면매립 FRP 보강보의 휨 거동)

  • Park Jae Hyun;Hong Sung Nam;Park Sun Kyu;Jung Woo Tai;Park Jong Sup;Park Young Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.157-160
    • /
    • 2005
  • This paper presents the results of a study on improvement in flexure capacities of RC beams strenthened with near surface mounted prestressed CFRP rod and plate. Experimental variables include type of CFRP, prestressing level and existence of MI(Mechanical Interlocking). Tests show that prestressed beams exhibit a higher crack-load as well as a higher steel-yielding load compared to no-prestressed strengthened beams.

  • PDF