• Title/Summary/Keyword: CFD system

Search Result 1,611, Processing Time 0.03 seconds

Development of Air Flow Simulator in Agricultural Facility based on Virtual Reality (가상현실 기반 농업시설 공기유동 시뮬레이터의 개발)

  • Noh, Jae Seung;Kim, Yu Yong;Yoo, Young Ji;Kwon, Jin Kyung;Lee, In Bok;Kim, Rack Woo;Kim, Jun Gyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.16-27
    • /
    • 2019
  • Using virtual reality technology, users can learn and experience many interactions in virtual space like the actual physical space. This study was conducted to develop air flow simulator that allows farmers and consultants to consult air flow through VR devices by creating a greenhouse or pigpen model. It can help educate farmers about the importance of ventilation effects for agricultural facilities. We proposed CFD visualization system by building a virtual reality environment and constructing database of CFD and structure of agricultural facilities. After consultants can set up situations according to environmental conditions, the users experience the visualized air flow of agricultural facility according to the ventilation effects. Also it can provide a quantified environmental distribution in the agricultural facility. Currently, the CFD data in agricultural facilities are established during winter and summer. In order to experience various environmental conditions in the developed system, The experts need to run CFD data under various environmental conditions and register them in the system requirements.

A Geothermal Model of Pit Area Using Computational Fluid Dynamics (CFD를 이용한 피트의 지중열 모델 구축에 관한 연구)

  • Min, Joon Ki;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.

Predicting Execution Times of CFD Solvers for the Metacomputing System on a Supercomputing Environment (슈퍼 컴퓨팅 환경에서 메타 컴퓨터를 위한 전산 유체 해석 프로그램의 수행 시간 예측 도구 개발)

  • Kang Kyung-Woo;Na Seon-Uk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.187-192
    • /
    • 1999
  • A metacomputing system is constructed by integrating the heterogeneous supercomputers at KORDIC supercomputer center. The implementation is directed toward building up an easy-to-use supercomputing environment for Computational Fluid Dynamics (CFD) simulations. The key feature is an automatic resource selection According to the predicted performance, the system assigns the request job to the most suitable resource which satisfies the user's demands. Verification tests are conducted by using example CFD applications. An overview of the system is given and derivation of performance prediction models is described in details. Discussion is made of the test results to illustrate applicability and usefulness of the proposed models.

  • PDF

Optimum Design of Air Nozzle System for Automatic Car Wash Machine using CFD and DOE (CFD 및 DOE를 활용한 자동세차기 노즐시스템의 최적설계)

  • Jung, Uk-Hee;Choi, Young-Seok;Kwon, Oh-Myoung;Lee, Kyoung-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.34-40
    • /
    • 2007
  • An optimization approach is investigated for the design of new nozzle system in a automatic car wash machine. Three-dimensional computational fluid dynamics and design of experiment methods have been employed to know the mutual interaction between the nozzle shape in the automatic car wash machine and the airflow velocity distribution on the vehicle surface. The performances of air nozzle system were defined as the velocity magnitude and the uniformity of the velocity on the surface of the car. Predicted jet velocity distributions for the optimized geometry were compared with experimental data and the comparisons showed generally good agreements. Also, the performance of the dryer was improved with the optimized results.

Optimization of a Savonius hydrokinetic turbine for performance improvement: A comprehensive analysis of immersion depth and rotation direction

  • Mafira Ayu Ramdhani;Il Hyoung Cho
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.141-156
    • /
    • 2024
  • The turbine system converts the kinetic energy of water flow to electricity by rotating the rotor in a restricted waterway between the seabed and free surface. A turbine system's immersion depth and rotation direction are significantly critical in the turbine's performance along with the shape of the rotor. This study has investigated the hydrodynamic performance of the Savonius hydrokinetic turbine (SHT) according to the immersion depth and rotation direction using computational fluid dynamics (CFD) simulations. The instantaneous torque, torque coefficient, and power coefficients are calculated for the immersion ratios Z/D ranging [0.25, 3.0] and both clockwise (CW) and counterclockwise (CCW) rotations. A flow visualization around the rotor is shown to clarify the correlation between the turbine's performance and the flow field. The CFD simulations show that the CCW rotation produces a higher power at shallow immersion, while the CW rotation performs better at deeper immersion. The immersion ratio should be greater than the minimum of Z/D=1.0 to obtain the maximum power production regardless of the rotation direction.

The Comparison of the In-Situ Thermal Response Tests and CFD Analysis of Vertical-type Geothermal Heat Exchanger (수직형 지중 열교환기의 현장 열응답 시험과 CFD 해석 비교)

  • Sim, Yong-Sub;Lee, Hee-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3164-3169
    • /
    • 2013
  • In this study, a series of CFD analysis was performed in order to predict the leaving water temperature and the slope of in-situ thermal response tests of the vertical-type geothermal heat exchangers. The geothermal heat exchanger and surrounding ground formation were modeled using GAMBIT and simulation was used by utilizing FLUENT which is commercial CFD code. Comparing with the results of CFD and in-situ thermal response tests, the results of CFD was presented good agreement with $0.5^{\circ}C$ difference of Leaving Water Temperature and with 1.6% difference of the Slope.

A Fast Least-Squares Algorithm for Multiple-Row Downdatings (Multiple-Row Downdating을 수행하는 고속 최소자승 알고리즘)

  • Lee, Chung-Han;Kim, Seok-Il
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.55-65
    • /
    • 1995
  • Existing multiple-row downdating algorithms have adopted a CFD(Cholesky Factor Downdating) that recursively downdates one row at a time. The CFD based algorithm requires 5/2p $n^{2}$ flops(floating point operations) downdating a p$\times$n observation matrix $Z^{T}$ . On the other hands, a HCFD(Hybrid CFD) based algorithm we propose in this paper, requires p $n^{2}$+6/5 $n^{3}$ flops v hen p$\geq$n. Such a HCFD based algorithm factorizes $Z^{T}$ at first, such that $Z^{T}$ = $Q_{z}$ RT/Z, and then applies the CFD onto the upper triangular matrix Rt/z, so that the total number of floating point operations for downdating $Z^{T}$ would be significantly reduced compared with that of the CFD based algorithm. Benchmark tests on the Sun SPARC/2 and the Tolerant System also show that performance of the HCFD based algorithm is superior to that of the CFD based algorithm, especially when the number of rows of the observation matrix is large.rge.

  • PDF

Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas (습식 배연탈황 시스템의 효율 향상을 위한 전산해석)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.161-171
    • /
    • 2014
  • In this paper the flow dynamics of the flue gas equipment in the desulfurization system was numerically analyzed by simulating the problems for the turbulent and combustion flow from Induced Draft Fan(I.D.Fan) outlet to Booster Up Fan(B.U.Fan) inlet using the commercial CFD software of CFD-ACE+ in CFDRC company for Computational Fluid Dynamic Analysis. The guide vane of this section was examined for the minimum pressure loss and the uniform flow dynamic to B.U.Fan with the proper velocity from I.D,Fan exit to B,U,Fan inlet section at the boiler both the maximum continuous rating and the design base. The guide vanes at I,D.Fan outlet and B.U.Fan inlet were removed and modified by numerical simulation of the CFD analysis. The flue gas at the system had the less pressure loss and the uniform flow dynamics of the flow velocity and flow line by comparing with the old design equipment.

IFX : FEM/CFD visualization system for Desktop-Immersive environment collaborative work (IFX : 데스크탑 - 몰입 환경 간 협업을 위한 FEM/CFD 가시화 시스템)

  • Yun, Hyun-Joo;Wundrak, Stefan;Jo, Hyun-Jei
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.661-666
    • /
    • 2007
  • 최근들어 제품을 개발하는 과정 중, 디자이너와 개발자, 의사 결정권자들이 FEM, CFD 시뮬레이션 결과를 리뷰할 때에 가상현실기술을 도입하는 사례가 늘고 있다. 몰입감을 높여주는 가상현실환경은 모델에 대한 해석 결과물을 정확하고 효과적으로 분석할 수 있도록 돕는다. 데이터의 실제 크기와 같게 혹은 그보다 더 크고 자세한 이미지를 제공하는 가상현실 몰입환경은 사용자가 데스크탑 환경만을 사용할 때 경험할 수 없는 높은 사실감을 제공함으로써 사용자에게 시각적인 만족감을 줄 수 있다. 하지만 데스크탑 환경에 비해 해상도가 낮고, 어두운 곳에서 스테레오 안경이나 HMD(Head Mounted Display), Data glove등을 착용해야 하는 불편함과 멀미, 시각적인 피로, 방향감각 상실로 대표되는 가상멀미 등으로 인해 장시간 사용에 어려움이 있다. 데스트탑 환경에서의 데이터 리뷰는 고해상도 이미지 분석은 가능하지만, 입체감이 떨어지기 때문에 리뷰 데이터의 실제감이 떨어진다. 이와 같은 문제점들을 보완하기 위해서 본 논문에서는 데스크탑 환경과 가상현실 환경 간의 협업이 가능한 FEM/CFD 가시화 시스템을 제시한다. 본 시스템은 가상현실 몰입환경에서 해석 데이터를 단순히 가시화하는 것뿐만이 아니라, 데스크탑 시스템과 동일한 3D 인터페이스 구조를 제공한다. 따라서, 해석 결과 분석을 위한 동일한 post-processing 작업이 네트워크로 연결된 원격 공간의 사용자들이 사용하는 시스템들 사이에서 실시간으로 진행될 수 있다.

  • PDF

CFD Simulation of Multiphase Flow by Mud Agitator in Drilling Mud Mixing System

  • Kim, Tae-Young;Jeon, Gyu-Mok;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.121-130
    • /
    • 2021
  • In this study, a computational fluid dynamics (CFD) simulation based on an Eulerian-Eulerian approach was used to evaluate the mixing performance of a mud agitator through the distribution of bulk particles. Firstly, the commercial CFD software Star-CCM+ was verified by performing numerical simulations of single-phase water mixing problems in an agitator with various turbulence models, and the simulation results were compared with an experiment. The standard model was selected as an appropriate turbulence model, and a grid convergence test was performed. Then, a simulation of the liquid-solid multi-phase mixing in an agitator was simulated with different multi-phase interaction models, and lift and drag models were selected. In the case of the lift model, the results were not significantly affected, but Syamlal and O'Brien's drag model showed more reasonable results with respect to the experiment. Finally, with the properly determined simulation conditions, a multi-phase flow simulation of a mud agitator was performed to predict the mixing time and spatial distribution of solid particles. The applicability of the CFD multi-phase simulation for the practical design of a mud agitator was confirmed.