• 제목/요약/키워드: CFD software

검색결과 304건 처리시간 0.025초

A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD (CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구)

  • Kim Beom-Seok;Kim Jeong-Hwan;Nam Chung-Do;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

CFD Analysis of Marine Propeller-Hub Vortex Control Device Interaction (프로펠러와 허브 보오텍스 조절장치 상호작용 CFD 해석)

  • Park, Hyun-Jung;Kim, Ki-Sup;Suh, Sung_Bu;Park, Ill-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제53권4호
    • /
    • pp.266-274
    • /
    • 2016
  • Many researchers have been trying to improve the propulsion efficiency of a propeller. In this study, the numerical analysis is carried out for the POW(Propeller Open Water test) performance of a propeller equipped with an energy saving device called PHVC(Propeller Hub Vortex Control). PHVC is aimed to control the propeller hub vortex behind the propeller so that the rotational kinetic energy loss can be reduced. The unsteady Reynolds Averaged Navier-Stokes(URANS) equations are assumed as the governing flow equations and are solved by using a commercial CFD(Computational Fluid Dynamics) software, where SST k-ω model is selected for turbulence closure. The computed characteristic values, thrust, torque and propulsion efficiency coefficients for the target propeller with and without PHVC and the local flows in the propeller wake region are validated by the model test results of KRISO LCT(Large Cavitation Tunnel). It is concluded from the present numerical results that CFD can be a good promising method in the assessment of the hydrodynamic performance of PHVC in the design stage.

CFD Simulation of Multiphase Flow by Mud Agitator in Drilling Mud Mixing System

  • Kim, Tae-Young;Jeon, Gyu-Mok;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.121-130
    • /
    • 2021
  • In this study, a computational fluid dynamics (CFD) simulation based on an Eulerian-Eulerian approach was used to evaluate the mixing performance of a mud agitator through the distribution of bulk particles. Firstly, the commercial CFD software Star-CCM+ was verified by performing numerical simulations of single-phase water mixing problems in an agitator with various turbulence models, and the simulation results were compared with an experiment. The standard model was selected as an appropriate turbulence model, and a grid convergence test was performed. Then, a simulation of the liquid-solid multi-phase mixing in an agitator was simulated with different multi-phase interaction models, and lift and drag models were selected. In the case of the lift model, the results were not significantly affected, but Syamlal and O'Brien's drag model showed more reasonable results with respect to the experiment. Finally, with the properly determined simulation conditions, a multi-phase flow simulation of a mud agitator was performed to predict the mixing time and spatial distribution of solid particles. The applicability of the CFD multi-phase simulation for the practical design of a mud agitator was confirmed.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part II - Variation in Radius of Curvature of Groove Edge (그루브의 Trap 효과에 대한 CFD 해석: 제2부 - 그루브 모서리의 곡률반경 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • 제36권6호
    • /
    • pp.359-364
    • /
    • 2020
  • Numerical investigation of the groove trap effect with variation in the groove-edge radius of curvature is presented here. The trap effect is evaluated in a two-dimensional sliding bearing using computational fluid dynamics (CFD). This simulation is based on the discrete phase model (DPM) and standard k - ε turbulence model using commercial CFD software, FLUENT. The numerical results are evaluated by comparisons with streamlines and particle trajectories in the grooves. Grooves are applied to various lubrication systems to improve their lubrication characteristics, such as load carrying capacity increment, leakage reduction, frictional loss reduction, and preventing three-body abrasive wear due to trapping effect. This study investigates the grove trapping effect for various groove-edge radius of curvature values and Reynolds numbers. The particle is assumed to be made of steel, with a circular shape, and is injected as a single particle in various positions. One-way coupling is used in the DPM model because the single particle injection condition is applied. Further, the "reflect" condition is applied to the wall boundary and "escape" condition is used for the "pressure inlet" and "pressure outlet" boundaries. From the numerical results, the groove edge radius is found to influence the groove trap effect. Moreover, the groove trap effect is more effective when applying the groove edge radius.

A Study on Performance Improvement of Multi-stage Pump Applying CFD Analysis Technique (CFD해석기법을 적용한 다단펌프 성능향상에 관한 연구)

  • Kim, Sang-Yu;Kim, Jae-Yeol;GAO, JIACHEN
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제21권3호
    • /
    • pp.70-76
    • /
    • 2022
  • Recently, the demand for ultra-precision processing has increased owing to the increase in the demand for high-performance ultra-precision optical parts in the fields of information technology (IT), bio, healthcare, aerospace, and future automobiles. In this study, a performance improvement of a multi-stage pump was achieved by improving the pump casing structure rather than using the existing performance improvement method. To verify the performance improvement, the CFD analysis reliability of the existing pump, Pump A, was verified using the FLUENT app in the analysis software ANSYS, and the pump casing was improved through the verified CFD analysis of Pump B. Therefore, we want to analyze the performance improvement.

Computational Investigation of Seakeeping Performance of a Surfaced Submarine in Regular Waves

  • Jung, Doojin;Kim, Sanghyun
    • Journal of Ocean Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.303-312
    • /
    • 2022
  • A submarine is optimized to operate below the water surface because it spends most of its time in a submerged condition. However, the performance in free surface conditions is also important because it is unavoidable for port departure and arrival. Generally, potential flow theory is used for seakeeping analysis of a surface ship and is known for excellent numerical accuracy. In the case of a submarine, the accuracy of potential theory is high underwater but is low in free surface conditions because of the nonlinearity near the free surface area. In this study, the seakeeping performance of a Canadian Victoria Class submarine in regular waves was investigated to improve the numerical accuracy in free surface conditions by using computational fluid dynamics (CFD). The results were compared to those of model tests. In addition, the potential theory software Hydrostar developed by Bureau Veritas was also used for seakeeping performance to compare with CFD results. From the calculation results, it was found that the seakeeping analysis by using CFD gives good results compared with those of potential theory. In conclusion, seakeeping analysis based on CFD can be a good solution for estimating the seakeeping performance of submarines in free surface conditions.

Software Development for the Performance Evaluation and Blade Design of a Pitch-Controlled HAWT based on BEMT (날개요소 운동량 이론을 이용한 피치제어형 수평축 풍력터빈 블레이드 설계 및 성능평가 소프트웨어 개발)

  • Mo, Jang-Oh;Kim, Bum-Suk;Kim, Mann-Eung;Choi, Young-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • 제14권2호
    • /
    • pp.5-10
    • /
    • 2011
  • The purpose of this study is to develop a software for the performance evaluation and blade design of a pitch-controlled HAWT using BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. The HERACLES V2.0 software consist of three major part ; basic blade design, aerodynamic coefficient mapping and performance calculation including stall or pitch control option. A 1MW wind turbine blade was designed at the rated wind speed(12m/s) composing five different airfoils such as FFA-W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power predicted by BEMT at the rated wind speed is about 1.27MW. Also, CFD analysis was performed to confirm the validity of the BEMT results. The comparison results show good agreement about the error of 6.5% in rated mechanical power.

Software Development for the Performance Evaluation and Blade Design of a HACT by BEMT (블레이드요소 운동량 이론에 의한 수평축 조류발전용 터빈 블레이드 설계 및 성능평가 소프트웨어 개발)

  • Mo, Jang-Oh;Kim, Mann-Eung;Hyun, Beom-Soo;Kim, You-Taek;Oh, Cheol;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.96-101
    • /
    • 2011
  • In this study, we have established the design techniques, with which we can design and evaluate performance of blades on a horizontal axis current turbine, by application of blade element momentum theory considering the blade tip's loss model, and finally developed the domestic software(MCT-blade V2.0). We have designed and evaluated performance of blades for the 2MW class by using of the software, and confirmed its calculation results from BEMT by comparing those results from commercial code of ANSYS FLUENT. In a state of rated velocity 2.5m/s, the mechanical power from BEMT is calculated as 2,121kW, which is considered to satisfy the electrical power, but the value from CFD is calculated as 1,901kW, which is considered a little deficient for the target output.

Development of an Engineering Education Framework for Aerodynamic Shape Optimization

  • Kwon, Hyung-Il;Kim, Saji;Lee, Hakjin;Ryu, Minseok;Kim, Taehee;Choi, Seongim
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.297-309
    • /
    • 2013
  • Design optimization is a mathematical process to find an optimal solution through the use of formal optimization algorithms. Design plays a vital role in the engineering field; therefore, using design tools in education and research is becoming more and more important. Recently, numerical design optimization in fluid mechanics, which uses computational fluid dynamics (CFD), has numerous applications in the engineering field, because of the rapid development of high-performance computing resources. However, it is difficult to find design optimization software and contents for educational purposes in aerospace engineering. In the present study, we have developed an aerodynamic design framework specifically for an airfoil, based on the EDucation-research Integration through Simulation On the Net (EDISON) portal. The airfoil design framework is composed of three subparts: a geometry kernel, CFD flow analysis, and an optimization algorithm. Through a seamless interface among the subparts, an iterative design process is conducted. In addition, the CFD flow analysis and the design framework are provided through a web-based portal system, while the computation is taken care of by a supercomputing facility. In addition to the software development, educational contents are developed for lectures associated with design optimization in aerospace and mechanical engineering education programs. The software and content developed in this study is expected to be used as a tool for e-learning material, for education and research in universities.

Cellular Automata Simulation System for Emergency Response to the Dispersion of Accidental Chemical Releases (사고로 인한 유해화학물질 누출확산의 대응을 위한 Cellular Automata기반의 시뮬레이션 시스템)

  • Shin, Insup Paul;Kim, Chang Won;Kwak, Dongho;Yoon, En Sup;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • 제22권6호
    • /
    • pp.136-143
    • /
    • 2018
  • Cellular automata have been applied to simulations in many fields such as astrophysics, social phenomena, fire spread, and evacuation. Using cellular automata, this study develops a model for consequence analysis of the dispersion of hazardous chemicals, which is required for risk assessments of and emergency responses for frequent chemical accidents. Unlike in cases of detailed plant safety design, real-time accident responses require fast and iterative calculations to reduce the uncertainty of the distribution of damage within the affected area. EPA ALOHA and KORA of National Institute of Chemical Safety have been popular choices for these analyses. However, this study proposes an initiative to supplement the model and code continuously and is different in its development of free software, specialized for small and medium enterprises. Compared to the full-scale computational fluid dynamics (CFD), which requires large amounts of computation time, the relative accuracy loss is compromised, and the convenience of the general user is improved. Using Python open-source libraries as well as meteorological information linkage, it is made possible to expand and update the functions continuously. Users can easily obtain the results by simply inputting the layout of the plant and the materials used. Accuracy is verified against full-scale CFD simulations, and it will be distributed as open source software, supporting GPU-accelerated computing for fast computation.