• Title/Summary/Keyword: CFD software

Search Result 305, Processing Time 0.034 seconds

Analysis of Drag Force on Leading car using CFD (수치해석을 통한 철도차량 전두부의 공기저항 해석)

  • Ko T. H.;Kim J. S.;Goo D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.132-138
    • /
    • 2003
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car with the operation speed of 180km/h. The results of aerodynamic analysis for two leading car models which one is expressed with lineal beauty and the other is with curvaceous beauty are compared with each other and they offer the proposal of modification for two models in order to decrease the drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

CFD Analysis of Characteristic for Drag Force on leading Cab made of Composite Material (복합재 철도차량 전두부의 공기저항 특성 분석을 위한 유동해석)

  • Ko Taehwan;Song Younsoo;Hu Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.38-42
    • /
    • 2004
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car made of composite material. The results of aerodynamic analysis for two leading car models, which one is expressed with lineal beauty and the other is with curvaceous beauty, are compared with each other and offer the proposal of modification for two models in order to decrease be drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

Parametric numerical study of wind barrier shelter

  • Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.75-93
    • /
    • 2015
  • This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.

A Study of the Relation Between Nozzle Geometry, Internal flow and Sprays Characteristics in Diesel Fuel Injection Systems

  • Payri, Raul;Molina, S.;Salvador, F.J.;Gimeno, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1222-1235
    • /
    • 2004
  • This study examines the influence of geometry on the internal flow and macroscopic behavior of the spray in Diesel nozzles. For this investigation, two bi-orifice nozzles were employed: one cylindrical and one conical. The first step is to use a non-destructive characterization method which is based on the production of silicone moulds so that the precise internal geometry of the two nozzles can be measured. At this stage the nozzles have been characterized dimensionally and therefore the internal flow can be studied using CFD calculations. The results gained from this experiment make it possible also to ascertain the critical cavitation conditions. Once the critical cavitation conditions have been identified, the macroscopic parameters of the spray can be studied in both cavitating and non-cavitating conditions using a test rig pressurized with nitrogen and with the help of a image acquisition system and image processing software. Consequently, research can be carried out to determine the influence that cavitation has on macroscopic spray behavior. From the point of view of the spray macroscopic behavior, the main conclusion of the paper is that cavitation leads to an increment of the spray cone angle. On the other hand, from the point of view of the internal flow, the hole outlet velocity increases when cavitation appears. This phenomenon can be explained by the reduction in the cross section of the liquid phase in the outlet section of the hole.

A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers (용접형 판형열교환기의 열전달 및 압력강하특성에 관한 수치해석)

  • Jeong, Jong-Yun;Nam, Sang-Chul;Kang, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.676-682
    • /
    • 2008
  • Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using Computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is $H_2O$/LiBr solution with the LiBr concentration of 50-60% in mass. The numerical simulation shows reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems.

The study of defrosting performance on automobile Windshield through different injection angle (Different injection angle에 따른 자동차 전면 유리 제상성능 연구)

  • Kang, Hyu-Goo;Lee, Kum-Bae;Kader, Md. Faisal;Oh, Gyu-Nam
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2454-2459
    • /
    • 2008
  • The objective of this paper is to find out the most effective injection angle for the purpose of deicing through SC/Tetra, a commonly used CFD software. Nowadays, vehicles are developed giving priority to an improved interior which emphasizes a pleasant environment and thermal comfort without decreasing the basic performance. Clear visibility is one of the most important phenomenon. The primary factors which affect the efficiency of deicing are 3D geometry of Defrost Nozzle, the inlet velocity and temperature of the flow and the injection angle. However in this paper, all these parameters are optimized by changing the injection angle. A wide range of injection angle from 5 degree to 50 degree have been considered for analysis. A very good defrosting performance has been achieved with 45 degree injection angle which can satisfy the condition of NHTSA.

  • PDF

CFD Analysis of Drag Force on leading Cab of Tilting Train with 180km/h Service Speed (수치해석을 통한 180km/h급 틸팅차량 전두부의 주행 공기저항 해석)

  • Ko Taehwan;Song Younsoo;Han Seung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.351-357
    • /
    • 2003
  • The optimal design for a leading car considering the aerodynamic resistance is required on the high-speed train due to increasing of ratio of drag force with proportion for the square of velocity. The aerodynamic analysis using CFD in the stage of concept design offers more economical analysis method which is used to estimate the influence of flow and pressure around the leading car than the experimental method using the Mock-up. In this study, we want to assist the artistic design with aerodynamics analysis in order to get the optimal design for leading car with the operation speed at 180km/h. The results of aerodynamic analysis for two leading car models which one is expressed with lineal beauty and the other is with curvaceous beauty are compared with each other and they offer the proposal of modification for two models in order to decrease the drag force. The shape of curvaceous model is better for the pressure force but slightly worse for the viscous force than the other. The Fluent software is used for the calculation of flow profile in this study.

  • PDF

Analysis and Optimization on Inside Flows of Fluid in Roll-to-Roll Slot-Die Nozzle by CFD Simulation (CFD 해석을 이용한 롤투롤 슬롯-다이 내부 유동 분석 및 최적화)

  • Kim, Seongyong;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.611-616
    • /
    • 2016
  • Computational fluid dynamic simulation based on the ABAQUS software was conducted to observe the inside flow of slot-die nozzle. The slot-die nozzle was modeled as 3-dimensional structure and three significant parameters were determined: inlet velocity of fluid, reservoir angles, number of strips none of which have been mentioned previously in the literature. The design of experiment, full factorial analysis was performed within determined design and process levels. The simulation result shows the inlet fluid velocity is most significant factor for the flows of inside nozzle. As an interaction effect, reservoir angle is closely related with number of strip that should address when the nozzle is designed. Moreover, the optimized values of each determined parameter were obtained as 35 mm/s of inlet velocity, 3 of strip numbers, and $22^{\circ}$ of reservoir angles. Based on these parameters, the outlet velocity was obtained as 0.53% of outlet uniformity which is improved from 8.67% of nominal results.

A Study on Resin flow Analysis and Free Surface forming at Micro-stereolithography using a Dynamic Pattern Generator (동적 패턴 생성기를 이용한 마이크로 광 조형 시스템에서 수지 유동 해석 및 자유표면 형성에 관한 연구)

  • Won M.H.;Choi J.W.;Ha Y.M.;Lee S.H.;Kim H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.878-881
    • /
    • 2005
  • A Stereolithography technology is based on stacking of sliced layer from STL file that is converted from 3-dimensional CAD data. A microstereolithography technology is evolved from conventional stereolithography to fabricate microstructures. In this technology, we have to consider influence of resin flow to make refresh surface. To generate new resin surface, stage has to be moved downward deeply and upward to desired position. At this time, resin flow affects to refresh surface of resin. And resin viscosity is the key factor in simulation of resin flow. By setting optimal refresh time for resin surface, total fabrication time is reduced and there is no damage to fabricated layers. In this research, we simulate resin flow using CFD software and derive optimal stage moving time and dwelling time.

  • PDF

CFD validation and grid sensitivity studies of full scale ship self propulsion

  • Jasak, Hrvoje;Vukcevic, Vuko;Gatin, Inno;Lalovic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2019
  • A comparison between sea trial measurements and full-scale CFD results is presented for two self-propelled ships. Two ships considered in the present study are: a general cargo carrier at Froude number $F_n=0:182$ and a car carrier at $F_n=0:254$. For the general cargo carrier, the propeller rotation rate is fixed and the achieved speed and trim are compared to sea trials, while for the car carrier, the propeller rotation rate is adjusted to achieve the 80% MCR. In addition, three grids are used for each ship in order to assess the grid refinement sensitivity. All simulations are performed using the Naval Hydro pack based on foam-extend, a community driven fork of the OpenFOAM software. The results demonstrate the possibility of using high-fidelity numerical methods to directly calculate ship scale flow characteristics, including the effects of free surface, non-linearity, turbulence and the interaction between propeller, hull and the flow field.