• Title/Summary/Keyword: CFD calculation

Search Result 386, Processing Time 0.023 seconds

A Study of Ventilation Requirements for Tunnel Considering Recirculation near Tunnel Portals (인접 터널로부터의 재유입을 고려한 터널 내 소요환기량 산정 연구)

  • Rie, Dong-Ho;Choi, Baek-Yeol;Yoon, Sung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.66-70
    • /
    • 2010
  • This paper analyzes difference between current tunnel ventilation calculation method and advanced one which considers effects of polluted air recirculation near tunnel portals. For the calculation, CFD(Computational fluid dynamics) technique was utilized. From the result, it was found that 4.38% more fresh air is required when there is polluted air recirculation near tunnel portal areas. Hence, it is recommanded that the consideration of polluted air recirculation should be made when deciding the ventilation requirements for tunnel.

NUMERICAL ANALYSIS TO DESIGN THE FIN-TUBE TYPE HEAT EXCHANGER OF STIRLING ENGINE (핀-튜브 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구)

  • Kang, Seok-Hun;Chung, Dae-Hun;Kim, Hyuck-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.163-166
    • /
    • 2010
  • Numerical analysis is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver FLUENT. The fin-tube type of heat exchanger numerical calculation is conducted by changing the shape, number and material of fin shape of working fluid channel, etc in three-dimensional combustion field. Adjusted one-way constant velocity is used as the representative velocity of oscillating flow. The optimum design of heat exchanger considering the heat trasfer capability is suggested by using the calculation results.

  • PDF

Development of Hydrogen Recirculation Blower for Fuel Cell Vehicle by Flow Analysis (유동해석에 의한 연료전지용 수소 재순환 블로워 개발)

  • Shim, Chang-Yeul;Hong, Chang-Oug;Kim, Young-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.684-689
    • /
    • 2005
  • Parametric calculation were conducted to estimate performance of variable geometry of hydrogen recirculation blower for fuel cell vehicle. The pressure rise and efficiency are effected by change of the geometric parameter of impeller and casing, and stripper clearance under various mass flow. Hydrodynamic performance were evaluated, and also the inner flow fields were investigated by CFD. Calculated results show good coincidence with experimental test results of total pressure performance. Performance of model designed by parametric calculations satisfied experimental data of verification model.

  • PDF

A Study on the Possibility of Hull Form Design using Numerical Towing Tank (SHIPFLOW)

  • Lee, Kwi-Joo;Joa, Soon-Won;Sun, Jae-Ouk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.251-253
    • /
    • 2003
  • This paper discusses some practical problems of the determination of ship wave resistance from flow calculation and the model test. there are so many kind of CFD program as FLUENT, WAVIS, SHIPFLOW, COMET etc. for finding optimized hull. we should know how much percent we trust the program. so if we gather computed values of the wave resistance we'll able to get more accurated values of presumptive.

  • PDF

Numerical study on the thermal-hydraulic safety of the fuel assembly in the Mast assembly (수치해석을 이용한 마스트집합체 내 핵연료 집합체의 열수력적 안전성 연구)

  • Kim, YoungSoo;Yun, ByongJo;Kim, HuiYung;Jeon, JaeYeong
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.149-163
    • /
    • 2015
  • In this study, we conducted study on the confirmation of thermal-hydraulic safety for Mast assembly with Computational Fluid Dynamics(CFD) analysis. Before performing the natural convection analysis for the Mast assembly by using CFD code, we validated the CFD code against two benchmark natural convection data for the evaluation of turbulence models and confirmation of its applicability to the natural convection flow. From the first benchmark test which was performed by Betts et al. in the simple rectangular channel, we selected standard k-omega turbulence model for natural convection. And then, calculation performance of CFD code was also investigated in the sub-channel of rod bundle by comparing with PNL(Pacific Northwest Laboratory) experimental data and prediction results by MATRA and Fluent 12.0 which were performed by Kwon et al.. Finally, we performed main natural convection analysis for fuel assembly inside the Mast assembly by using validated turbulence model. From the calculation, we observed stable natural circulation flow between the mast assembly and pool side and evaluated the thermal-hydraulic safety by calculating the departure from nucleate boiling ratio.

Prediction of Explosion Risk for Natural Gas Facilities using Computational Fluid Dynamics (CFD) (전산유체역학시뮬레이션을 이용한 도시가스 설비의 폭발위험성 예측)

  • Han, Sangil;Lee, Dongwook;Hwang, Kyu-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.606-611
    • /
    • 2018
  • City natural gas is classified flammable hazardous gas and should be secured according to explosion risk assessment determined by Industrial Standard KS C IEC. In this study, leak size, ventilation grade and effectiveness were adopted to the KS C IEC for risk assessment in natural gas supply system. To evaluate the applicability of the computational fluid dynamics (CFD), the risk assessment was studied for four different conditions using hypothetical volume($V_z$) valuesfrom gas leak experiments, KS C IEC calculation, and CFD simulation.

A CFD ANALYSIS FOR THERMAL MIXING IN A SUBCOOLED WATER UNDER TRANSIENT STEAM DISCHARGE CONDITIONS (과도상태 증기제트 방출시 과냉각수조 내의 열혼합 해석)

  • Kang H.S.;Kim Y.S.;Chun H.G.;Song C.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.8-18
    • /
    • 2006
  • A CFD benchmark calculation for a steam blowdown test was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between steam and subcooled water. In the CFD analysis, the grid model simulating the sparger and the IRWST pool were developed by the axisymmetric condition and then the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. Thermal mixing phenomenon in the subcooled water tank was treated as an incompressible flow, a free surface flow between the air and the water, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behavior reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted.

Evaluation of Rectangular Section Flutter Derivatives by CFD (CFD에 의한 사각단면의 플러터계수 산출)

  • Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.693-700
    • /
    • 2003
  • An evaluation method for flutter derivatives is proposed, using indicial functions of structural members produced by Computational Fluid Dynamics (CFD). Flutter derivatives are obtained by Fourier integration of indicial functions. Instead of direct simulation of oscillating objects, only the calculation of time-dependent lift and moment variations of fixed objects with constant attack angle are necessary.The Finite Element Method (FEM) is developed as a tool for the numerical method. For two rectangular sections having different aspect ratios, the numerical analysis and wind tunnel test are carried out to inspect the adequacy of this study. The results proved to be good, and they could be used for a preliminary design.

Numerical Analysis of a Liquid Sheet Flow around a Simplified Sprinkler Head Using a CFD Model (CFD 모델을 이용한 단순 스프링클러 헤드 주위의 액막 유동해석)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.111-117
    • /
    • 2016
  • The present study examined the free surface flow of a liquid sheet near a sprinkler head using a Computational Fluid Dynamics (CFD) model and considered the feasibility of the empirical model for predicting the initial spray characteristics of the sprinkler head through a comparison of the CFD results. The CFD calculation for a simplified sprinkler geometry considering the nozzle and deflector were performed using the commercially available CFD package, CFX 14.0 with the standard $k-{\varepsilon}$ turbulence model and theVolume of Fluid (VOF) method. The predicted velocity of the empirical model at the edge of deflector were in good agreement with that of the CFD model for the flat plate region but there was a certain discrepancy between the two models for the complex geometry region. The mean droplet diameter predicted by the empirical model differed significantly from the measured value of the real sprinkler head. On the other hand, the empirical model can be used to understand the mechanism of droplet formation near the sprinkler head and predict the initial spray characteristics for cases without experimental data.