• Title/Summary/Keyword: CFD Modeling

Search Result 378, Processing Time 0.026 seconds

STUDY ON AUTOMATIC 3D WING SHAPE MODELING AND GRID GENERATION (3차원 날개 모델링 및 격자 생성 자동화에 대한 연구)

  • Ryu, G.Y.;Kim, B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.125-129
    • /
    • 2009
  • In this paper automatic 3D wing shape modeling program is introduced. The program is developed in Visual Basic based on Net Framework 3.5 environment by using CATIA COM Library, and it is used together with CATIA system to model 3D wings with or without flaps. With this program users can easily construct wing models by specifying geometry parameters which are usually design variables with the aid of easy-to-use GUI environment, and specifying sectional airfoil data is done either by using analytic shape functions such as NACA series airfoils or by providing input files with point data describing the airfoil shape. When all the input parameters are provided, users can either work further with the model in the CATIA system which would be automatically started by the program or save the resultant model in the format of users choice. Unstructured grid generation program is also briefly described which can make grid generation task for a 3D wing easy and efficient one when used together with the wing modeling program by choosing STL format as the model's output format.

  • PDF

Numerical modeling for thickness uniformity improvement of ICP-CVD $SiO_2$ by optimization of gas inlet position (Gas 주입구 위치 변화에 따른 ICP-CVD $SiO_2$의 두께 균일도 개선 모델링)

  • Kim, Yeong-Uk;Yang, Won-Gyun;Go, Seok-Il;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.97-98
    • /
    • 2007
  • $SiH_4-Ar-O_2$ ICP-CVD에서 증착된 $SiO_2$막의 두께 균일도를 개선시키기 위해 반응가스 주입구의 위치가 두께 균일도에 영향을 주었을 것으로 예상하고, CFD-ACE를 이용하여 2차원 모델링을 하여 최적데이타를 도출하였다.

  • PDF

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

Time-Efficient, Repetitive Predictions of the Performance of PEMFCs Based on a Neural Network-Based, Reduced Order Model

  • Shin Dong-Il;Oh Tae-Hoon;Park Myong-Nam;Rengaswamy Raghunathan
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.55-60
    • /
    • 2006
  • Detailed modeling of PEMFCs has been getting considerable interest for predicting the fuel cell performance and also for use in various systems engineering activities. While CFD-based equipment models provide detailed analyses of the performance, they are very time-consuming to develop and run. The computations become quite complex when such models have to be embedded into the flowsheet-level optimization of fuel cell systems. In this paper, we present results about building and using NN-based reduced order models for quickly and repetitively predicting the flow of reactants in a PEMFC manifold.

  • PDF

Effect of the Flow Actuator on the Asymmetric Vortex at High Angle of Attack (고받음각 오자이브의 비대칭 와류에 작용하는 구동기 효과 분석)

  • Lee, Eunseok;Lee, Jin Ik;Lee, Kwang Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.607-612
    • /
    • 2013
  • The effect of the flow actuator on the asymmetric vortex structure around the ogive-cylinder body with fineness ratio of 4 flying at the speed of Mach 0.1 at angle of attack of 50 degree is studied. The ogive-cylinder model is developed with the actuator placed near the nose tip and numerically simulated using the in-house CFD code named KFLOW. The numerical simulation employs two different actuator modeling: one is the boundary condition given by blowing normal to the surface and another shearing on the surface. The numerical simulation reveals that response of the vortex structure to the actuation is dependent on the type of modeling as well as the strength and direction of the actuation.

Numerical Modeling of an Inductively Coupled Plasma Sputter Sublimation Deposition System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Fluid model based numerical simulation was carried out for an inductively coupled plasma assisted sputter deposition system. Power absorption, electron temperature and density distribution was modeled with drift diffusion approximation. Effect of an electrically conducting substrate was analyzed and showed confined plasma below the substrate. Part of the plasma was leaked around the substrate edge. Comparison between the quasi-neutrality based compact model and Poisson equation resolved model showed more broadened profile in inductively coupled plasma power absorption than quasi-neutrality case, but very similar Ar ion number density profile. Electric potential was calculated to be in the range of 50 V between a Cr rod source and a conductive substrate. A new model including Cr sputtering by Ar+was developed and used in simulating Cr deposition process. Cr was modeled to be ionized by direct electron impact and showed narrower distribution than Ar ions.

Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method (Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구)

  • Kim, Sa-Yop;Oh, Yun-Jung;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

Computational Fluid Dynamic Modeling for Internal Antenna Type Inductively Coupled Plasma Systems (CFD를 이용한 내장형 안테나 유도 결합 플라즈마 시스템 모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.164-175
    • /
    • 2009
  • CFD is used to analyze gas flow characteristics, power absorption, electron temperature, electron density and chemical species profile of an internal antenna type inductively coupled plasma system. An optimized grid generation technology is used for a complex real-scale models for industry. A bare metal antenna shows concentrated power absorption around rf a feeding line. Skin depth of power absorption for a system is modeled to 50 mm, which is reported 53 mm by experiments. For an application of bipolar plates for hydrogen fuel cells, multi-sheet loading ICP nitriding system is proposed using an internal ICP antenna. It shows higher atomic nitrogen density than reported simple pulsed dc nitriding systems. Minimum gap between sheets for uniform nitriding is modeled to be 39 mm.