• Title/Summary/Keyword: CFD Model

Search Result 2,068, Processing Time 0.028 seconds

Plasma Uniformity Numerical Modeling of Geometrical Structure for 450 mm Wafer Process System (450 mm 웨이퍼 공정용 System의 기하학적 구조에 따른 플라즈마 균일도 모델링 분석)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.190-198
    • /
    • 2010
  • Asymmetric model for plasma uniformity by Ar and $CF_4$ was modeled by the antenna structure, the diameter of chamber, and the distance between source and substrate for the development of plasma equipment for 450 mm wafer. The aspect ratio of chamber was divided by diameter, distance from substrate, and pumping port area. And we found the condition with the optimized plasma uniformity by changing the antenna structure. The drift diffusion and quasi-neutrality for simplification were used, and the ion energy function was activated for the surface recombination and etching reaction. The uniformity of plasma density on substrate surface was improved by being far of the distance between substrate wall and chamber wall, and substrate and plasma source. And when the antenna of only 2 turns was used, the plasma uniformity can improve from 20~30% to 4.7%.

The Study on Development of Low NOx Combustor with Lean Burn Characteristics for Microturbine (희박 예혼합 연소를 이용한 마이크로터빈의 저공해 연소기 개발에 관한 연구)

  • Yoon, Jeong-Jung;Lee, Heon-Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.63-72
    • /
    • 2003
  • In order to reduce NOx emissions in the 20kW class microturbine under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and high pressure. Theair from a compressor with the pressure of 2.5bar, 3.0bar, 3.5bar was supplied to the combustor with the temperature 560K through the air preheat-treatment. The sampling exhaust gas was measured at the immediate exit of the combustor. For the effect of temperature on NO and CO emissions, though NOx were increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx were increased and CO was decreased also. NOx were decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratio of 0.10 to 0.16 in the lean region. NOx were increased with increasing equivalent ratio, but CO was decreased as an influence of flame temperature. CFD work with an appropriate combustion model predicated a complicated swirling flow pattern in the combustor, and also produced a numerical value of NOx and CO emissions which was to be compared with the experimental one. As the results of this study, NOx are expected to be reduced to less than 42ppm at 15% O2 when operated at the design condition of the 20kW class microturbine.

  • PDF

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.

The Numerical Simulation of Unsteady Flow in a Mixed flow Pump Guide Vane

  • Li, Yi-Bin;Li, Ren-Nian;Wang, Xiu-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.200-205
    • /
    • 2013
  • In order to investigate the characteristics of unsteady flow in a mixed flow pump guide vane under the small flow conditions, several indicator points in a mixed flow pump guide vane was set, the three-dimensional unsteady turbulence numerical value of the mixed flow pump which is in the whole flow field will be calculated by means of the large eddy simulation (LES), sub-grid scale model and sliding mesh technology. The experimental results suggest that the large eddy simulation can estimate the positive slope characteristic of head & capacity curve. And the calculation results show that the pressure fluctuation coefficients of the middle section in guide vane inlet will decrease firstly and then increase. In guide vane outlet, the pressure fluctuation coefficients of section will be approximately axially symmetrical distribution. The pressure fluctuation minimum of section in guide vane inlet is above the middle location of the guide vane suction surface, and the pressure fluctuation minimum of section in which located the middle and outlet of guide vane. When it is under the small flow operating condition, the eddy scale of guide vane is larger, and the pressure fluctuation of the channel in guide vane being cyclical fluctuations obviously which leads to the area of eddy expanding to the whole channel from the suction side. The middle of the guide vane suction surface of the minimum amplitude pressure fluctuation to which the vortex core of eddy scale whose direction of fluid's rotation is the same to impeller in the guide vane adhere.

Study on Concept Design of Supersonic Inlet and Flow Control of Bleeding under Operating Condition (초음속 흡입구 개념 설계와 운영조건 내의 블리딩(bleeding) 유동제어 연구)

  • Choi, Jaehwan;Cheon, Somin;Choe, Yohan;Hong, Wooram;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1025-1031
    • /
    • 2012
  • The present paper deals with concept design of supersonic inlet based on compressible flow theory and flow control of bleeding in order to guarantee stability of supersonic inlet of ramjet engine in broad range of operating conditions. Shock instability, shock wave-boundary layer interaction and flow separation should be properly controlled to improve performance of the supersonic inlet. Considering shock strength, boundary layer and flow separation, the supersonic inlet is modified from the basic model which is designed under inviscid theory. Consequently, shock is stabilized, and required mass flow rate is obtained. Furthermore, bleeding is applied to the supersonic inlet to maintain performance in off-design conditions. Mass flow condition is adopted for modeling of bleeding effect, and performance of the supersonic inlet is evaluated by changing bleeding locations and numbers.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

PEMFC Optimization Design Using Genetic Algorithm (유전자 알고리즘을 이용한 고분자 전해질 연료전지 최적화 설계)

  • Yang, Woo-Joo;Wang, Hong-Yang;Lee, Dae-Hyung;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.889-897
    • /
    • 2014
  • This paper presents a method for finding an optimized result by using a genetic algorithm (GA) based on a PEMFC analysis result. The conventional analysis method designs fuel cells one-by-one, and each result is compared to obtain the best performance. Because the computational burden of the conventional analysis is enormous, the present optimization process provides an inefficient tool by automatically setting the boundary and material properties and mesh generation. As the change can be reflected automatically in the channel geometry with GA, the fuel cell analysis result with various sizes can be obtained easily. Therefore, the global maximum performance can be obtained through a GA optimization procedure.

Intake-Air Flow and Distribution Characteristics of the Gasoline Engine Intake-Manifold (가솔린엔진 흡기매니폴드의 흡기유량 및 분배특성)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4718-4725
    • /
    • 2011
  • Intake-air flow and distribution characteristics of the 1600cc gasoline engine intake manifold have been studied using the computer simulation. Simulation has been conducted using both one-dimensional performance simulation and three-dimensional CFD software. Steady state flow simulation result of the intake manifold shows good distribution characteristics that the standard deviation of flow coefficients is below 1.0 percentage for both one- and three-dimensional simulation. Even though one-dimensional simulation result slightly overestimates compared with three-dimensional simulation result, both results show very good agreement in flow coefficient trend. Also, unsteady state simulation result shows consistent distribution characteristics with that of steady state. It is shown that unsteady state distribution characteristics might be able to be predicted through the steady state mass distribution result.

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

A CFD Study on the Combustion Pressure Oscillation by a Location of a Pressure Transducer inside Closed Vessel (밀폐용기 연소실험 시 센서위치에 따라 변화하는 압력 진동에 대한 수치적 연구)

  • Han, Doo-hee;Ahn, Gil-hwan;Ryu, Byung-tae;Sung, Hong-gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • A computational fluid dynamics simulation of pyrotechnic material combustion inside a cylindrical closed vessel was carried out using the Eulerian-Lagrangian method. The 5th order upwind WENO scheme and the improved delayed detached eddy turbulence model were implemented to capture shock waves. The flow structure was analyzed inside the cylindrical vessel with a pressure sensor installed at the side wall center. The analysis revealed that the pressure oscillated because of the shock wave vibration. Additionally, the simulation results with four different sensor tab depths implied that, inside the sensor tab, eddies were generated by the excessively large gap between the sensor diaphragm and the side wall. These eddies caused irregularity to the measured time-pressure curve, which is an undesirable characteristic.