• 제목/요약/키워드: CFD Analysis

검색결과 2,963건 처리시간 0.028초

3차원 CFD를 사용한 환상 실의 누설량 예측 (Prediction of Annular Type Seal Leakage Using 3D CFD)

  • 석희수;하태웅
    • Tribology and Lubricants
    • /
    • 제25권3호
    • /
    • pp.150-156
    • /
    • 2009
  • Precise leakage prediction for annular type seals of turbomachinery is necessary for enhancing their efficiency and various prediction methods have been developed. As the seal passage is designed intricately, the analysis based on Bulk-flow concept which has been mainly used in predicting seal leakage is limited. In order to improve the seal leakage prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD (Computational Fluid Dynamics) analysis has been performed for predicting leakage of various non-contact type anular seals using FLUENT. Compared to the results by Bulk-flow model analysis, experiment, and 2D CFD analysis, the result of 3D CFD analysis shows improvement in predicting seal leakage, especially for the parallel grooved pump seal.

진공청소기 모터 하우징 내부 온도상승 개선을 위한 연구 (A Study for the Improvement of Temperature Distribution in the Motor Housing of Vacuum Cleaner)

  • 김주신;김성근;이응호;주보경
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.425-429
    • /
    • 2008
  • The present study has been conducted to improve temperature distribution in the motor housing of vacuum cleaner and reduce the development period by CFD analysis. CFD analysis is performed to investigate the thermal flow pattern in the motor housing and validated by experiments. The validation of CFD analysis is conducted by comparing the temperature distribution on motor housing cover. Through the present study the CFD analysis procedure in the motor housing of vacuum cleaner is established and various experimental materials are obtained. These analysis results can be used effectively as design factors of vacuum cleaner.

  • PDF

CFD를 활용한 브러쉬 요소의 누설유량 예측 해석 (CFD Analysis of Leakage Prediction for Brush Element)

  • 김결;하태웅
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.11-16
    • /
    • 2017
  • The accurate prediction of leakage flow through the brush element of brush seal at the steam turbine is important to find optimum design parameters for increasing an efficiency. In this study, CFD analysis method using commercial software FLUENT is proposed to predict leakage through the brush element. Since the brush element has a complex three-dimensional shape with many bristle assemblies, it is difficult to analyze the flow field. Therefore, if the brush element is assumed to be porous medium region, the analysis time can be shortened. Two determination methods of resistance coefficients of the Darcian porous medium equation are suggested. By comparing the 2D and 3D CFD analysis results for the leakage of the brush element using the two resistance coefficient determination methods, the effectiveness of the analysis for the porous medium assumption is proved.

CFD 기법에 의해 예측된 흡입구 및 배기구 손실을 고려한 터보축 엔진의 장착성능에 관한연구 (Installed Performance Analysis of a Turboshaft Engine Considering Inlet and Exhaust Losses Estimated by Cfd Technique)

  • 공창덕
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.106-109
    • /
    • 2006
  • The purpose of this study is to analyze the installed performance of the PW206C turbo shaft engine used in the development of the smart UAV(Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). It mainly aims to investigate performance behavior at installed conditions using both inlet and exhaust losses generated by CFD analysis of the ducts. The ways employed to be able to analyze the performance extensively were mainly rallied out by performing design point analysis of the engine where the performance simulation results from the commercial program 'GASTURB 9' used for simulation were used as inlet boundary condition for the ducts in CFD program The use of CFD tool involve modeling of the ducts to conform with the stipulated shape and sizes as defined by KARI with a grid density that allows reasonable flow characteristics applicable to aircraft components. Respective values of Shaft horse power obtained by varying flight Mach number, Gas generator RPM and Altitude considering several losses inclusive of those estimated by use of CFD tool were then plotted at three conditions with the ECS-OFF, ECS-MAX and at un-installed condition. Reasonable results were obtained as a result of using computational fluid dynamics that can hence be justified as an alternative tool for use in future flow analysis of engine and components.

  • PDF

회전톱 재단기의 미세먼지 집진효율 향상을 위한 형상 설계 개선 (Shape Design Improvement of the Rotary Cutting Machine to Improve the Dust Capturing Efficiency using CFD)

  • 김기희;이희남;전완호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.508-511
    • /
    • 2011
  • Dust released from the rotating timber cutting process causes various kinds of diseases as well as safety issues. Although there were lots of efforts to reduce the amount of dust by installing large-sized dust collectors or by using expensive high-quality cutters, they proved to be not so effective. In this study we want to modify and improve the design of the rotary cutter system to prevent dust from being released to the environment as possible by using computational fluid dynamics (CFD) analysis. We have developed CFD models of the conventional cutter and several design modifications. Through the CFD analysis the characteristics of the air flow was predicted, and then the behavior of dust produced during the cutting process was analyzed for different designs. The most efficient design feature to capture dust inside the cutter as much as possible was chosen based on the CFD analysis results. Finally the prototype of the ratary saw machine was constructed and tested to check the dust capturing efficiency, which result is reasonably consistent with the predicted performance through the CFD analysis.

  • PDF

시뮬레이션 시간 단계에 따른 FOWT 서지방향 항력계수 결정에 관한 CFD해석 연구 (CFD Analysis for Determining Surge-direction Drag Coefficient of FOWT based on Simulation Time Step)

  • 양호성;이영호
    • 신재생에너지
    • /
    • 제20권2호
    • /
    • pp.17-25
    • /
    • 2024
  • In this study, the effect of the time step specified in a computational fluid dynamics (CFD) simulation on load response is analyzed and the drag coefficients of the floating body of floating offshore wind turbines (FOWTs) are estimated. By evaluating the error in the FOWT load response and the change in the drag-coefficient values based on the density of the time intervals, this study aims to establish a time-interval setting that minimizes the time and cost of CFD simulations for selecting drag-coefficient values. Practical CFD utilization strategies necessary for the calibration of medium-to high-fidelity analysis tools are presented. Based on a comparative analysis of CFD simulations conducted at various time intervals, the results confirmed that under a certain time interval that sufficiently considers various factors, the accuracy of the FOWT response with respect to density shows minimal differences, thereby providing an efficient utilization method for CFD simulations in FOWT design and analysis.

입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석 (CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique)

  • 정상민;박승운;최의근;오수빈;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.8-15
    • /
    • 2024
  • This thesis investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, it analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. The thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

입자 추적 기법을 활용한 에어로졸 제트 프린팅 공정의 분사 특성에 대한 CFD 해석적 분석 (CFD Analytical Analysis of Jetting Characteristics in Aerosol Jet Printing Process Using Particle Tracking Technique)

  • 정상민;박승운;최의근;오수빈;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.8-14
    • /
    • 2024
  • This paper investigates the jetting characteristics of an aerosol jet printing (AJP) process as a function of design and operating conditions. The governing equations of the AJP system are derived for experimentation and analysis. To understand the characteristics of the AJP system, this thesis analyzes the jetting characteristics as a function of the flow rate of the carrier gas and the sheath gas, and the variation of the linewidth with the nozzle exit size based on particle tracking. This thesis focuses on computational fluid dynamics (CFD), which is a computer simulation. The particle tracking results obtained by CFD were analyzed using MATLAB. CFD analytical models can be analyzed in environments with different conditions and consider more specific situations than mathematical computational models. The validity of the CFD analysis is shown by comparing the experimental results with the CFD analysis.

Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core

  • Chen, Guangliang;Qian, Hao;Li, Lei;Yu, Yang;Zhang, Zhijian;Tian, Zhaofei;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3171-3181
    • /
    • 2021
  • This research serves to advance the development of engineering computational fluid dynamics (CFD) computing efficiency for the analysis of pressurized water reactor (PWR) core using rod-type fuel assemblies with mixing vanes (one kind of typical PWR core). In this research, a CFD scheme based on the reconstruction of the initial fine flow field (RIF CFD scheme) is proposed and analyzed. The RIF scheme is based on the quantitative regulation of flow velocities in the rod-type PWR core and the principle that the CFD computing efficiency can be improved greatly by a perfect initialization. In this paper, it is discovered that the RIF scheme can significantly improve the computing efficiency of the CFD computation for the rod-type PWR core. Furthermore, the RIF scheme also can reduce the computing resources needed for effective data storage of the large fluid domain in a rod-type PWR core. Moreover, a flow-ranking RIF CFD scheme is also designed based on the ranking of the flow rate, which enhances the utilization of the flow field with a closed flow rate to reconstruct the fine flow field. The flow-ranking RIF CFD scheme also proved to be very effective in improving the CFD efficiency for the rod-type PWR core.

정사각형 수조 진동대실험에 대한 상관해석 (Post-Correlation Analysis for Shake Table Test of Square Liquid Storage Tank)

  • 손일민;김재민;최형석;백은림
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권1호
    • /
    • pp.23-29
    • /
    • 2017
  • 이 연구에서는 유체저장탱크의 내진 설계 고도화에 활용하기 위하여 정사각형 수조의 슬러싱 진동대실험에 대한 상관해석을 수행하였다. 이를 위하여 CFD 프로그램인 ANSYS CFX를 이용하였다. CFD 해석 프로그램 검증을 위해 슬러싱 공진이 발생하는 운동에 대한 해석모델의 요소크기 및 난류모델에 대한 슬러싱응답의 민감도해석을 수행하였다. 그 결과, 수직방향 요소크기 뿐만 아니라 수평방향 요소크기에 따라 수위 예측에 민감한 영향을 미치는 것을 알 수 있었다. 또한, SST 난류모델을 사용한 CFD해석 결과가 실험 결과와 매우 잘 일치하는 것을 알 수 있었다. 이로부터 결정된 CFX 해석모델을 사용하여, 가진 주파수와 가진 진폭이 다른 3가지 실험 결과에 대하여 상관해석을 수행하였다. 그 결과, CFD해석모델을 사용하여 지진해석을 수행할 경우, 슬러싱응답이 실험 결과와 매우 잘 일치하는 것을 알 수 있었다.