• Title/Summary/Keyword: CFD 모사

Search Result 215, Processing Time 0.022 seconds

Coal Ash Combustion Simulation for 500-MW Coal-firing Boiler (500MW급 화력발전 보일러의 석탄회 연소 시뮬레이션)

  • Hwang, Min-Young;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Gyu-Bo;Kim, Seung-Mo;Park, Myung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.939-946
    • /
    • 2011
  • In thermal power generation companies, the recycling of refined ash (LOI < 6%) obtained from a PC-firing furnace is beneficial for the companies, e.g., it can be used for making lightweight aggregates. However, ash having a high LOI, which cannot be reused, is still buried in the ground. To obtain refined ash, the re-burning of high-LOI ash (LOI > 6%) in a PC-firing furnace can be an alternative. In this study, a numerical analysis was performed to demonstrate the effects of ash re-burning. An experimental constant value was decided by TGA (thermo-gravimetric analysis), and a DTF (drop-tube furnace) was used in the experiment for calculating the combustion of ash. On the basis of the trajectory of the moving particles of coal and ash, it was concluded that supplying ash near the burner, which is located high above the ground, is appropriate. On the basis of numerical results, it was concluded that an ash supply rate of 6 ton/h is suitable for combustion, without affecting the PC-firing boiler.

Numerical Study for Flow Uniformity in Selective Catalytic Reduction(SCR) Process (SCR 공정에서 반응기 내부의 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4666-4672
    • /
    • 2011
  • Performance of NOx removal in SCR(Selective Catalytic Reduction) process depends on such various factors as catalyst factors (catalyst composition, catalyst form, space velocity, etc.), temperature of exhaust gas, and velocity distribution of exhaust gas. Especially the flow uniformity of gas stream flowing into the catalyst layer is believed to be the most important factor to influence the performance. In this research, the flow characteristics of a SCR process at design stage was simulated, using 3-dimensional numerical analysis method, to confirm the uniformity of the gas stream. In addition, the effects of guide vanes, baffles, and perforated plates on the flow uniformity for the inside and catalyst layer of the reactor were studied in order to optimize the flow uniformity inside the SCR reactor. It was found that the installation of a guide vane at the inlet duct L-tube part and the installation of a baffle at the upper part is very effective in avoiding chaneling inside the reactor. It was also found that additional installation of a perforated plate at the lower part of the potential catalyst layer buffers once more the flow for very uniform distribution of the gas stream.

Study of Smoke Behavior and Differential Pressure in the Refuge Safety Area According to Damper Capacity of Smoke Control (제연댐퍼 송풍량에 따른 피난 안전 구역 차압 및 연기 거동 특성 연구)

  • Lee, Jae-Bin;Moon, Joo-Hyun;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2011
  • In this study, we calculated the smoke movement at the fire area of the refuge floor which has the refuge safety area in case of fire in the high rise building by using a computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). The buoyancy plume was applied using the temperature and flow velocity which represent 10 MW heat release rate in order to describe the fire, and the smoke movement was predicted using a species conservation equation. The pressurization system of smoke control was adopted with smoke control damper in refuge safety area, at the result, it is confirmed that the damper capacity was enough to smoke control in which the flow rate of supply was applied 25 $m^3/s$ in the case of the door at fire area opened only, and 50 $m^3/s$ in the doors at the fire area and lobby both opened case. They were satisfied in NFSC 501-A. Even though the door of fire area closed, there were smoke leakages at the gap between the door and wall. In addition, the refugee could be isolated in the fire area when the door of fire area closed during smoke control in the case of using the high damper flow rate of supply, 50 $m^3/s$. Therefore the proper damper flow rate of supply are needed in order to prevent the damage of refugee and this study proposes the suitable condition of damper capacity according to refuge scenario.

Numerical Sudy on Bubbling Fluidized Bed Reactor for Fast Pyrolysis of Waste Lignocelluosic Biomass (폐목질계 바이오매스의 급속열분해 기포유동층 반응기에 대한 수치해석적 연구)

  • Lee, Ji Eun;Choi, Hang Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.710-716
    • /
    • 2013
  • New and renewable energy sources have drawn attention because of climate change. Many studies have been carried out in waste-to-energy field. Fast pyrolysis of waste lignocelluosic biomass is one of the waste-to-energy technologies. Bubbling fluidized bed (BFB) reactor is widely used for fast pyrolysis of the biomass. In BFB pyrolyzer, bubble behavior influences on the chemical reaction. Accordingly, in the present study, hydrodynamic characteristics and fast pyrolysis reaction of waste lignocellulosic biomass occurring in a BFB pyrolyzer are scrutinized. The computational fluid dynamics (CFD) simulation of the fast pyrolysis reactor is carried out by using Eulerian-Granular approach. And two-stage semi-global kinetics is applied for modeling the fast pyrolysis reaction of waste lignocellulosic biomass. To summarize, generation and ascendant motion of bubbles in the bed affect particle behavior. Thus biomass particles are well mixed with hot sand and consequent rapid heat transfer occurs from sand to biomass particles. As a result, primary reaction is observed throughout the bed. And reaction rate of tar formation is the highest. Consequently, tar accounts for 66wt.% of the product gas. However, secondary reaction occurs mostly in the freeboard. Therefore, it is considered that bubble behavior and particle motions hardly influences on the secondary reaction.

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.