• 제목/요약/키워드: CFD (computational Fluid Dynamics)

검색결과 2,039건 처리시간 0.035초

A NUMERICAL INVESTIGATION OF INDOOR AIR QUALITY WITH CFD

  • Sin Vai Kuong;Sun Ho I
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.87-93
    • /
    • 2005
  • Macao, a city with three sides bounded by water, is hot and humid in weather in more than six months of a year. This uncomfortable weather induces the frequency of operating air-conditioners. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In the paper, investigation of distribution on carbon dioxide, room air temperature and velocity, as well as air diffusion performance index (ADPI) of a single bedroom in Macao is studied by using the computational fluid dynamics (CFD) software FLOVENT 3.2. Simulations of locating the air-conditioner at 4 different walls will be done and comparisons and analyses of the results will be performed to decide a proper location for the air-conditioner for obtaining good thermal comfort.

전산유체계산을 통한 고속 활주선의 저항성능 및 유동분포 해석 (A Study on the Resistance Performance and Flow Pattern of High Speed Planing Hull using CFD)

  • 박규린;김동진;김선영;이신형
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.23-33
    • /
    • 2019
  • Unmanned Surface Vehicle (USV) is being developed to do maritime survey and maritime surveillance at Korea Research Institute of Ships & Ocean engineering (KRISO). The goal is that USV should be operated at the maximum speed of 45 knots and it should be operated at sea state 4. Therefore the planing hull of USV should be excellent in resistance performance and manoeuvring performance. It is needed to check its performance using Experimental Fluid Dynamics (EFD), Computational Fluid Dynamics (CFD) or analytic method before designing the hull. In this study, resistance performance was analyzed by EFD and CFD. EFD with heave and pitch was performed at high speed towing system in Seoul National University. CFD was performed using SNUFOAM based on openFOAM with dynamic mesh to calculate running attitudes. The results of CFD were compared with EFD results. The results of CFD were resistance, running attitudes and wave height. The flow distribution and pressure distribution were also analyzed. The results of numerical resistance was under estimated than EFD. Even though the results of CFD have a slight limitation, it can be successfully used to estimate the resistance performance of planing hull. In addition it can be used as a supplement for EFD results.

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.

인공 도로협곡 관측 자료를 활용한 전산유체역학모델 검증 (Verification of Computational Fluid Dynamics Model Using Observation Data in Artificial Street Canyon)

  • 김도형;홍선옥;이대근;이영곤;김백조
    • 대기
    • /
    • 제26권3호
    • /
    • pp.423-433
    • /
    • 2016
  • In this study, performance of a computational fluid dynamics (CFD) model is assessed from analysis on air flow pattern which is observed in the artificial street canyon. Field observations focusing on flows were conducted at an artificial street canyon in Magok region. For the observation of three-dimensional airflow structures, twelve three-dimensional wind anemometers (hereafter, CSAT3) were installed inside the street canyon. The street canyon was composed of two rectangular buildings with 35-m length, 4-m width, and 7-m height. The street width (distance between the buildings) is 7 m, making the street aspect ratio (defined by the ratio of building height to street width) of 1. For the observation of above-building wind, a CSAT3 was installed above the northwest-side building. Southwesterly, westerly and northwesterly were dominant in the street canyon during the observations. Because wind direction is parallel to the street canyon in the southwesterly case, westerly and northwesterly were selected as inflow directions in numerical simulations using a computational fluid dynamics model developed through the collaborative research project between National Institute of Meteorological Sciences and Seoul National University (CFD_NIMR_SNU). The observations showed that a well-structured vortex flow (skimming flow) and an evidence of a small eddy at the corner of the downwind building and ground appeared. The CFD_NIMR_SNU reproduced both the observed flow patterns reasonably well, although wind speeds inside the street canyon were underestimated.

선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석 (Multiphase CFD Analysis of Microbubble Generator using Swirl Flow)

  • 윤신일;김현수;김진광
    • 열처리공학회지
    • /
    • 제35권1호
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

Computational Fluid Dynamics Modeling Studies on Bacterial Flagellar Motion

  • Kumar, Manickam Siva;Philominathan, Pichai
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.341-348
    • /
    • 2011
  • The study of bacterial flagellar swimming motion remains an interesting and challenging research subject in the fields of hydrodynamics and bio-locomotion. This swimming motion is characterized by very low Reynolds numbers, which is unique and time reversible. In particular, the effect of rotation of helical flagella of bacterium on swimming motion requires detailed multi-disciplinary analysis. Clear understanding of such swimming motion will not only be beneficial for biologists but also to engineers interested in developing nanorobots mimicking bacterial swimming. In this paper, computational fluid dynamics (CFD) simulation of a three dimensional single flagellated bacteria has been developed and the fluid flow around the flagellum is investigated. CFD-based modeling studies were conducted to find the variables that affect the forward thrust experienced by the swimming bacterium. It is found that the propulsive force increases with increase in rotational velocity of flagellum and viscosity of surrounding fluid. It is also deduced from the study that the forward force depends on the geometry of helical flagella (directly proportional to square of the helical radius and inversely proportional to pitch).

유로 형상 변화에 따른 CFD 해석 결과와 PEM 연료전지 성능 비교 (Comparison between CFD analysis and experiments according to various PEMFC flow-field designs)

  • 이강인;박민수;이세원;주종남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.572-575
    • /
    • 2008
  • Flow-field design has much influence over the performance of proton exchange membrane fuel cell (PEMFC) because it affects the pressure magnitude and distribution of the reactant gases. To obtain the pressure magnitude and distribution of reactant gases in four kinds of flow-field designs without additional measurement equipment, computational fluid dynamics (CFD) analysis was performed. After the CFD analysis, the performance values of PEMFC according to the flow-field configurations were measured via a single cell test. As expected, the pressure differences due to different flow-field configurations were related to the PEMFC performance because the actual performance results showed the same tendency as the results of the CFD analysis. A large pressure drop resulted in high PEMFC performance. So, the single serpentine configuration gave the highest performance. On the other hand, the parallel flow-field configuration gave the lowest performance because the pressure difference between inlet and outlet was the lowest.

  • PDF

철도시스템 전산유체해석 표준 프레임웍을 이용한 KTX 차량 주변 압력장에 대한 수치해석 (A Numerical Analysis on the Pressure Field Around KTX Train Using the Standard Framework of CFD Analysis for Railway System)

  • 남성원;차창환;권혁빈
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.511-516
    • /
    • 2006
  • A standard framework of CFD(Computational Fluid dynamics) analysis for railway system has been developed to evaluate the overall aerodynamic performance of railway system and has been adopted to numerical simulation of the pressure field around KTX train. The framework is composed of standard aerodynamic model and standard aerodynamic performance to customize the general CFD solution process reflecting the characteristics of railway system such as various operation mode and performance factors. The results show that the standard framework of CFD analysis for railway system can provide objectivity and consistency to the CFD analysis for railway system and the pressure field around KTX train has been successively solved.

Transient CFD 모사기법을 이용한 정수지 최적설계 사례연구 (Case study on Remodeling Clearwell Hydraulic Structure using Transient CFD Simulation Technique)

  • 김선진;김성수;박노석;차민환;왕창근
    • 상하수도학회지
    • /
    • 제24권4호
    • /
    • pp.425-432
    • /
    • 2010
  • From the results of tracer test for the existing clearwell in Y water treatment plant, $T_{10}$ and T10/T were calculated as 150 min and 0.24, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by $T_{10}$ and $T_{10}$/T, and disinfection performance. In this study, using transient CFD(Computational Fluid Dynamics) simulation technique, tracer tests on dynamic condition for the suggested schemes were simulated. From the results of simulation, it was revealed that 8~6 baffles are necessary to guarantee the disinfection ability in the existing clearwell. Also, installing orifice baffle in the vicinity of inlet could increase plug flow fraction within clearwell.

CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증 (Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification)

  • 김혜민;권성안;이상준
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제46차 하계학술발표논문집 20권2호
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF