• Title/Summary/Keyword: CFD (Computational fluid dynamics)

Search Result 2,033, Processing Time 0.019 seconds

Detection with a SWNT Gas Sensor and Diffusion of SF6 Decomposition Products by Corona Discharges (탄소나노튜브 가스센서의 SF6 분해생성물 검출 및 확산현상에 관한 연구)

  • Lee, J.C.;Jung, S.H.;Baik, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • The detection methods are required to monitor and diagnose the abnormality on the insulation condition inside a gas-insulated switchgear (GIS). Due to a good sensitivity to the products decomposed by partial discharges (PDs) in $SF_6$ gas, the development of a SWNT gas sensor is actively in progress. However, a few numerical studies on the diffusion mechanism of the $SF_6$ decomposition products by PD have been reported. In this study, we modeled $SF_6$ decomposition process in a chamber by calculating temperature, pressure and concentration of the decomposition products by using a commercial CFD program in conjunction with experimental data. It was assumed that the mass production rate and the generation temperature of the decomposition products were $5.04{\times}10^{-10}$ [g/s] and over 773 K respectively. To calculate the concentration equation, the Schmidt number was specified to get the diffusion coefficient functioned by viscosity and density of $SF_6$ gas instead rather than setting it directly. The results showed that the drive potential is governed mainly by the gradient of the decomposition concentration. A lower concentration of the decomposition products was observed as the sensors were placed more away from the discharge region. Also, the concentration increased by increasing the discharge time. By installing multiple sensors the location of PD is expected to be identified by monitoring the response time of the sensors, and the information should be very useful for the diagnosis and maintenance of GIS.

Dehumidification and Temperature Control for Green Houses using Lithium Bromide Solution and Cooling Coil (리튬브로마이드(LiBr) 용액의 흡습성질과 냉각코일을 이용한 온실 습도 및 온도 제어)

  • Lee, Sang Yeol;Lee, Chung Geon;Euh, Seung Hee;Oh, Kwang Cheol;Oh, Jae Heun;Kim, Dea Hyun
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.337-341
    • /
    • 2014
  • Due to the nature of the ambient air temperature in summer in korea, the growth of crops in greenhouse normally requires cooling and dehumidification. Even though various cooling and dehumidification methods have been presented, there are many obstacles to figure out in practical application such as excessive energy use, cost, and performance. To overcome this problem, the lab scale experiments using lithium bromide(LiBr) solution and cooling coil for dehumidification and cooling in greenhouses were performed. In this study, preliminary experiment of dehumidification and cooling for the greenhouse was done using LiBr solution as the dehumidifying materials, and cooling coil separately and then combined system was tested as well. Hot and humid air was dehumidified from 85% to 70% by passing through a pad soaked with LiBr, and cooled from 308K to 299K through the cooling coil. computational Fluid Dynamics(CFD) analysis and analytical solution were done for the change of air temperature by heat transfer. Simulation results showed that the final air temperature was calculated 299.7K and 299.9K respectively with the deviation of 0.7K comparing the experimental value having good agreement. From this result, LiBr solution with cooling coil system could be applicable in the greenhouse.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.