• 제목/요약/키워드: CFD:Computational Fluid Dynamics

검색결과 2,032건 처리시간 0.035초

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

1 kWe 급 고체산화물 연료전지 스택에서의 유동 해석 (Numerical Analysis in a 1 kWe SOFC Stack for the Flow Phenomena)

  • 이근우;김영진;윤호원;김현진;윤경식;유지행
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.196-204
    • /
    • 2023
  • This study performed the numerical analysis of the internal flow phenomena of 1 kWe-class solid oxide fuel cell (SOFC) stacks with internal manifold type and planar cells using commercial computational fluid dynamics (CFD) software, Star-CCM+. In particular, the locations where the turbulent phenomena occur inside the SOFC stack were investigated. In addition, the laminar flow model and the standard k-ε turbulent model were used to calculate the SOFC stack, separately. And, the calculation results of both laminar and turbulent models were compared. The calculation results showed that turbulent phenomena occurred mainly in the cathode flow. Especially, the turbulent phenomena were found in the cathode inlet/outlet region, and local turbulence occurred in the end plate near the inlet pipe.

문제해결기법 TRIZ의 ADRIGE 알고리즘을 이용한 초음파분무화학기상증착 장비 개발에 관한 연구 (A Study on the Development of Mist-CVD Equipment Using the ADRIGE Algorithm of the Problem-Solving Method TRIZ)

  • 하주환;신석윤;변창우
    • 반도체디스플레이기술학회지
    • /
    • 제22권2호
    • /
    • pp.133-137
    • /
    • 2023
  • This study the problem of deposition uniformity observed during Mist-CVD deposition experiments. The TRIZ's ADRIGE algorithm, a problem-solving technique, is utilized to systematically analyze the issue and propose solutions. Through problem and resource analysis, technical contradictions are identified regarding the precursor's volume and its path when it encounters the substrate. To resolve these contradictions, the concept of applying the principle of dimensional change to transform the precursor's three-dimensional path into a one-dimensional path is suggested. The chosen solution involves the design of an enhanced Mist-CVD system, which is evaluated for feasibility and analyzed using computational fluid dynamics. The analysis confirms that the deposition uniformity consistently follows a pattern and demonstrates an improvement in uniformity. The improved Mist-CVD equipment is validated through analysis, providing evidence of its feasibility and yielding satisfactory results.

  • PDF

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • 제25권4호
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

Anti-icing Method of Heated Walkway in Ice Class Ships: Efficiency Verification of CNT-based Surface Heating Element Method Through Numerical Analysis

  • Woo-Jin Park;Dong-Su Park;Mun-Beom Shin;Young-Kyo Seo
    • 한국해양공학회지
    • /
    • 제37권5호
    • /
    • pp.215-224
    • /
    • 2023
  • While melting glaciers due to global warming have facilitated the development of polar routes, Arctic vessels require reliable anti-icing methods to prevent hull icing. Currently, the existing anti-icing method, i.e., the heating coil method, has disadvantages, such as disconnection and power inefficiency. Therefore, a carbon nanotube-based surface heating element method was developed to address these limitations. In this study, the numerical analysis of the surface heating element method was performed using ANSYS. The numerical analysis included conjugate heat transfer and computational fluid dynamics to consider the conduction solids and the effects of wind speed and temperature in cold environments. The numerical analysis method of the surface heating element method was validated by comparing the experimental results of the heating coil method with the numerical analysis results (under the -30 ℃ conditions). The surface heating element method demonstrated significantly higher efficiency, ranging from 56.65-80.17%, depending on the conditions compared to the heating coil method. Moreover, even under extreme environmental conditions (-45 ℃), the surface heating element method satisfied anti-icing requirements. The surface heating element method is more efficient and economical than the heating coil method. However, proper heat flux calculation for environmental conditions is required to prevent excessive design.

풍동시험을 활용한 10 MW급 부유식 해상풍력터빈 운송 및 설치 시 풍하중 예측 (Wind load estimation of a 10 MW floating offshore wind turbine during transportation and installation by wind tunnel tests)

  • 심인환
    • 풍력에너지저널
    • /
    • 제15권1호
    • /
    • pp.11-20
    • /
    • 2024
  • As the generation capacity of floating offshore wind turbines increases, the wind load applied to each turbine increases. Due to such a high wind load, the capacity of transport equipment (such as tugboats or cranes) required in the transportation and installation phases must be much larger than that of previous small-capacity wind power generation systems. However, for such an important wind load prediction method, the simple formula proposed by the classification society is generally used, and prediction through wind tunnel tests or Computational Fluid Dynamics (CFD) is rarely used, especially for a concept or initial design stages. In this study, the wind load of a 10 MW class floating offshore wind turbine was predicted by a simplified formula and compared with results of wind tunnel tests. In addition, the wind load coefficients at each stage of fabrication, transportation, and installation are presented so that it can be used during a concept or initial design stages for similar floating offshore wind turbines.

사용후핵연료 집합체의 다공성 매질 적용영역에 따른 콘크리트 저장용기 열전달 해석 (HEAT TRANSFER ANALYSIS OF CONCRETE STORAGE CASK DEPENDING ON POROUS MEDIA REGION OF SPENT FUEL ASSEMBLY)

  • 김형진;강경욱
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.33-39
    • /
    • 2016
  • Generally, thermal analysis of spent fuel storage cask has been conducted using the porous media and effective thermal conductivity model to simplify the structural complexity of spent fuel assemblies. As the fuel assembly is composed of two regions; active fuel region corresponding to UO2 pellets and unactive fuel region corresponding to the top and bottom nozzle, the heat transfer performance can be influenced depending on porous media application at these regions. In this study, numerical analysis on concrete storage cask of spent fuel was performed to investigate heat transfer effects for two cases; one was porous media application only to active fuel region(case 1) and the other one was porous media to whole length of fuel assembly(case 2). Using computational fluid dynamics code, the three dimensional, 1/4 symmetry model was constructed. For two cases, maximum temperatures for each component were evaluated below the allowable limits. For the case 1, maximum temperatures for fuel cladding, neutron absorber and baskets inside the canister were slightly higher than those for the case 2. In particular, even though the helium flows with low velocity due to buoyant forces occurred at the top and bottom of unactive fuel region, treating only active fuel region as the porous media was ineffective in respect of the heat removal performance of concrete storage cask, implying a conservative result.

대심도 지하정거장에서 수직구 위치에 따른 수치적 연구 (NUMERICAL STUDY WITH VENT SHAFT POSITION IN UNDERGROUND STATION)

  • 오현주;신대용;이상건;김동현;김찬중
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.36-43
    • /
    • 2012
  • When a high-speed train passes an underground station, large pressure waves are generated due to the piston effect. These pressure waves can cause the problems of vibration and noise as well as the ear discomfort of passengers at the underground station. This work numerically analyzed the pressure wave generation and propagation in an high-speed railway underground station, and the optimal location for vent shafts was studied to improve the passenger comfort by reducing the magnitude of the pressure wave and its rate of change. The evolution of pressure field in the underground station was calculated using a CFD(Computational Fluid Dynamics) software(Fluent), where the axis-symmetric two-dimensional model verified by Wu was used. And this study is applied to modelling of the underground station and the tunnel from Daegok station A-line of GTX(Great Train Express). From the result, we can have a conclusion that the role of vent shafts respectively were different according to the position in and out the underground station. Also Vent shaft in the underground station widely reduced pressure magnitude. And vent shaft out underground station reduced initial pressure peak value. Double vent shafts installed at tunnel toward station entrance and inside of the tunnel are the most efficient to reduce pressure. and pressure reduction increases according to the number of vent shaft.

새만금 방조제에 의한 풍력터빈 입사풍 변화의 전산유동해석 (Computational Flow Analysis on Wind Profile Change Projected to a Wind Turbine Behind Saemangeum Seawall)

  • 우상우;김현구
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.6-11
    • /
    • 2013
  • Jeollabuk-do has announced a future plan for the Saemangeum Wind Farm which includes the installation of fourteen wind turbines in a single line, located 500m back from the Saemangeum Seawall. It is anticipated as a positive effect that, for sea breeze blowing toward land, the average wind speed could be accelerated and the wind speed distribution could be uniformized by dint of the seawall, an upstream structure of the turbines. At the same time it is also anticipated as a negative effect that the strength of wind turbulence could be increased due to the flow separation generated at the back end of the seawall. According to the results of the computational fluid dynamics analysis of this paper, it has been observed that, at the 50m zone on the road surface located at the uppermost part of the Saemangeum Seawall, the average wind speed has been accelerated by approximately 6~7% and that wind shear has been decreased by 70%, but this positive effect disappears in the zone situated beyond the 100m from the back end of the seawall. It has also been observed that flow separation exists to a limited extent only below the bottom of the blade-sweeping circle and, furthermore, does not extend very far downstream of the wind. As a conclusion, it can be said that the seawall neither positively nor negatively affects the proposed Saemangeum Seawall Wind Farm layout.

Flank Milling 공법적용을 위한 자동차용 터보차져 임펠러의 설계체험 (DESIGNING EXPERIENCE OF AUTOMOTIVE TURBOCHARGER IMPELLER FOR FLANK MILLING)

  • 방중철
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.1-8
    • /
    • 2013
  • The performance of small-size impellers with ruled surfaces was investigated for flank milling over a wide speed range, using computational fluid dynamics analyses and gas bench tests. An impeller with a ruled surface was designed, manufactured, and tested to evaluate the effects of blade loading, the backsweep angle, and the relative velocity distribution on the compressor performance. The simulations and tests were completed using the same compressor cover with identical inlet and outlet channels to accurately compare the performance of the abovementioned impeller with a commercial impeller containing sculptured blades. Both impellers have the same number of blades, number of splitters, and shroud meridional profiles. The backsweep angles of the blades on the ruled impeller were selected to work with the same pinched diffuser as for a sculptured impeller. The inlet-to-exit relative velocity diffusion ratio and the blade loading were provided to maximize the flow rate and to minimize the surge flow rate. The design flow rate, rpm, were selected same for both impellers. Test results showed that for the compressor stage with a ruled impeller, the efficiency was increased by 0.32% with an extended surge margin without a reduction in the pressure ratio as compared to the impeller with the sculptured design. It was concluded that an increased relative velocity diffusion coupled with a large backsweep angle was an effective way to improve the compressor stage efficiency. Additionally, an appropriate blade loading distribution was important for achieving a wide operating range and higher efficiency.