• Title/Summary/Keyword: CFD:Computational Fluid Dynamics

Search Result 2,015, Processing Time 0.026 seconds

Aerodynamic Characteristics of Giromill with High Solidity (높은 솔리디티를 갖는 자이로밀의 공기역학적 특성)

  • Lee, Ju-Hee;Yoo, Young-So
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1273-1283
    • /
    • 2011
  • A 3-dimensional unsteady numerical analysis has been performed to evaluate the aerodynamic characteristics of a Giromill. Generally, the structure of a Giromill is simple and therefore easy to develop. In addition, the high solidity of the Gironmill helps improve the self-starting capacity at a low tip speed ratio (TSR). However, contrary to the Darrieus wind turbine which has a TSR of 4-7, a Giromill has a low TSR of 1-3. In this study, the aerodynamic characteristics of the Giromill are investigated using computational fluid dynamics (CFD). Three straight-bladed wings are used, and the solidity of the Giromill is 0.75. In contrast to a Darrieus wind turbine having low solidity, the Giromill shows a sudden decrease in the aerodynamic performance because of the interference between the wings and an increase in the drag on the wings in the downstream direction where wind flow is significantly reduced. Consequently, the aerodynamic performance decreased at a TSR value lower than 2.4.

Study on Heat Exchanging Characteristics of Automobile Exhaust Heat Recirculation Device (자동차 배기열 재순환장치의 열교환 특성에 관한 연구)

  • Hong, Young-Jun;Choi, Doo-Seuk;Jung, Young-Chul;Kim, Jong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4302-4307
    • /
    • 2011
  • Recently, various technologies for the fuel efficiency improvement are being developed. The purpose of this study is to evaluate the heat exchanging performance of a exhaust heat recirculation device and to propose a model with optimized performance. The device has been designed to warm up engine coolant as quickly as possible using wasted exhaust heat. To achieve these goals, heat transfer characteristics has been analyzed using CFD for the flow direction effect and in/out location effect of coolant. A method improving the effectiveness of heat exchange has been proposed. As a result, the highest efficiency in heat exchange was observed on condition that exhaust heat affects the coolant directly with a separate flow path between exhaust gas and coolant and that coolant flow rate is relatively low.

Development of an Automated Integrated Design System for Gerotor Pumps with Multiple Profiles(Ellipse and Involute) (타원.인벌루트 조합 형상을 갖는 지로터 펌프의 통합적 설계 자동화 시스템 개발)

  • Moon, Hyun-Ki;Jung, Sung-Yuen;Bae, Jun-Ho;Chang, Young-June;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.67-77
    • /
    • 2010
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated design system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance plus CFD-ACE+. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. CFD simulation results show trends similar to those carried out in experiments, and a quantitative comparison is presented. Results obtained from the automotive integrated design system enable the designer and manufacturer of oil pump to be more efficient in this field.

A Study on Alternative Fan Selection and Verification in Military Electronic Equipment (방산용 전자장비의 팬 선정 및 검증에 관한 연구)

  • Jin, Sung Eun;Kim, Hwan Gu;Yoon, Eui Youl;Jeon, Hee Ho;Kim, Seung Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1091-1097
    • /
    • 2017
  • Sales of commercial-type cooling fans intended for application in military electronics are often discontinued during equipment production. This results in requirements for alternative fan selection as well as equipment performance and reliability tests, such as high-temperature operation testing. This study deals with alternative fan selection and verification methods that can be used during the production process. First, an alternative fan was selected by calculating the flow and pressure required to effectively cool the equipment, then the feasibility of the selected fan was verified using a reliable CFD heat dissipation analysis model. Following this, a high-temperature operation test was performed using the alternative fan in the equipment. Results demonstrated that the equipment satisfied its required function in a high-temperature environment, and the main parts as well as internal air temperature were found to be thermally stable.

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Damper Locationfor Uniform Air Egress Velocity in the case of Two Fire Doors (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 2개 출입문이 존재할 경우 균일한 방연풍속을 얻기 위한 댐퍼 위치 선정방법)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • Vestibule pressurization system should produce uniform air egress velocity to prevent the intrusion of smoke into escape route when fire accidents occur inside a building and fire doors are open for evacuation of people. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where two doors are installed varying the location of a damper and louver angle. From simulations, we found that when the damper in the vestibule is located at the center of the wall opposite to two fire doors, the uniform air egress velocity can be obtained.

A Numerical Study on the Influence of the Shaft Geometry on the Stack Effect (수직통로의 형상이 연돌효과에 미치는 영향에 관한 수치해석 연구)

  • Jeon, Heung-Kyun;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.74-81
    • /
    • 2011
  • The numerical analyses for three different shafts in geometry of high buildings were carried out by using computational fluid dynamics model (FDS ver.5.3) for the calculation of the pressure difference and the location of the neutral plane and the visualization of stack effect. At 10 seconds of stack effect, the pressure difference of stack effect in the elevator shaft (79.3 Pa) almost corresponded to the theoretical value (78 Pa). At 300 seconds of stack effect, all the neutral planes of three cases were located about 49 m above floor, where was 5 m higher than the theoretical value. The maximum pressure difference between upper and lower position of shaft decreased with increasing of the geometrical complexity of shaft. This study showed that there was the difference of the stack effects among the geometries of shafts with the visualization of stack effect.

Design of Asymmetric Pre-swirl Stator for LNG Carrier according to Variation of Stator Shapes (날개의 형상 변화에 따른 LNG선용 비대칭 전류고정날개 설계)

  • Lee, Choel-Min;Shin, Yong-Jin;Kim, Moon-Chan;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Recently researchers are conducting a lot of research related to EEDI in order to satisfy IMO resolution MEPC. Especially they are interested in design of energy saving device. This paper is to design the asymmetric pre-swirl stator for 160K LNG carrier in order to reduce energy. Two types of the asymmetric pre-swirl stator are taken into account; constant and variable pitch angle stators. “constant” and “variable” mean state that the pitch of stators change by radius. The dimensions of the stators are initially determined using potential-flow code. The propulsion performances of the stators are predicted using viscous-flow code. The model test is carried out in towing tank in PNU. Prediction of ship performance generally follow ITTC recommended. Ship wake prediction was done by two method, ITTC 1978 and ITTC 1999. Therefore propulsion performances were compared ITTC 1978 with ITTC 1999 methods. Comparison components are delivered power and thrust deduction coefficient of the model. Final pre-swirl stator is selected by comparing experiment and CFD.

Design Sensitivity Estimation of Injector Nozzle Hole Considering Cavitation (캐비테이션에 관한 인젝터 노즐 홀의 설계민감도 평가)

  • Yeom, Jeong Kuk;Ha, Hyeong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1361-1369
    • /
    • 2013
  • This study performs a computational fluid dynamics (CFD) analysis of the inner flow of a multihole injector nozzle by using ANSYS CFX 13.0. Based on the obtained results, a design of experiment (DOE) was performed and applied to investigate the effects of injector nozzle design parameters on cavitation. To analyze the design sensitivity and signal-to-noise ratio (S/N ratio), the hole diameter, hole length, hole angle, and K-factor of the nozzle hole were selected as design parameters, and the effect of these parameters was investigated at 16 experimental points. Consequently, it was found that the effect of the K-factor on the cavitation and inner flow of the injector nozzle is the greatest. Thus, the selection of a suitable K-factor is important in nozzle design considering cavitation flow.

Numerical Study on the Characteristics of Thermal Plasmas Disturbed by Inserting a Langmuir Probe (랑뮤어 탐침에 의해 변형된 열플라즈마 특성에 관한 해석적 연구)

  • Lee, J.C.;Kim, Y.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Measurements with a Langmuir probe, which are the most often used procedures of plasma diagnostics, can disturb plasma flows and change its characteristics quite a little because the probe should be inserted into thermal flowing plasmas. In this study, we calculated the characteristics of thermal plasmas with and without the probe into an atmospheric argon free-burning arc numerically, and investigated aerodynamic and thermal disturbances with temperature and axial velocity distributions. For the modelling of thermal plasmas, we have made two governing equations, which are on the thermal-flow and electromagnetic fields, coupled together with a commercial CFD package and user-coded subroutines. It was found that thermal disturbances happened to both sides of the probe, before and behind, seriously. Due to the aerodynamic disturbance, we could find that there were the stagnation point in front of the probe and the wake behind it. Therefore, aerodynamic and thermal disturbances caused by the probe insertion should be considered to increase the reliability of the probe diagnostics.

Numerical Study on the Characteristics of Combustion and Emission in Pulverized Coal-fired Boiler for Using High Moisture Coal and Dry Coal (석탄화력보일러에서 고수분탄 및 건조석탄 사용에 따른 연소 및 배기배출 특성에 대한 전산해석 연구)

  • Ahn, Seok-Gi;Kim, Kang-Min;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.118-126
    • /
    • 2017
  • This study was performed to investigate the characteristics of combustion and emissions in pulverized coal fired boiler for using high moisture coal and dry coal through computational fluid dynamics(CFD). We validated this boiler model with performance data of the boiler. The results of flow characteristics showed that climbing speed of gases was increased as blending ratio of high moisture coal was increased. It can decrease a residence time of fuel in the furnace. And it influence coal combustion. The coal burnout and NOx generation in burner level were decreased as increasing blending ratio of high moisture coal. The gas temperature and NOx formation were increased after OFA level due to coal burnout delay.