• Title/Summary/Keyword: CFD, Computational fluid dynamics

Search Result 2,015, Processing Time 0.03 seconds

Effect of internal pressure variation on the ceramic particle separation characteristics : computer simulation (분리기 내부 압력 변화에 따른 세라믹 입자 분리 거동 전산모사)

  • 우효상;심광보;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.304-308
    • /
    • 2003
  • By controlling the internal pressure in the cyclone separator, we investigated the separation charateristics of $Al_2O_3$, $Fe_2O_3$ particles with the internal pressure variation. 3-dimensional Langrangian approach was applied for the analysis of the particles separation, and then the minimum cut diameter of the separated particles and the separation rate were calculated through tracking the particle trajectories. The density of the argon gas for transporting particles was decreased corresponding the pressure decrease, consequently, caused the internal pressure drop in the cyclone separator. For that reason the finer particles were separated as the pressure was changed from an atmospheric pressure to an low pressure. Specifically, at 50 torr pressure, $Al_2O_3$ particles of the size of about 4 $\mu\textrm{m}$ and $Fe_2O_3$particles of about 3 $\mu\textrm{m}$ could be separated.

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

Separation Analysis of a Store with Deployable Wings (날개 전개가 가능한 무장의 분리 특성해석)

  • Kim, Byeong-Kyoo;Kim, Sang-Jin;Kang, In-Mo;Kim, Myung-Seong;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.381-389
    • /
    • 2007
  • 6-DOF simulation program is developed in order to increase the efficiency of the store separation analysis. This S/W is much faster than a method based on CFD(Computational Fluid Dynamics) technology, and allows the simulation of stores with fixed shape as well as with extensible wings, because it uses aerodynamic databases which are prepared beforehand. In this paper, aerodynamic databases of stores are obtained with MSAP(Multi-body Separation Analysis Program), and unsteady damping coefficients are modeled with Missile Datcom. These databases and the 6-DOF simulation program are used to predict the trajectory of an external store, while its wings are being deployed. The analysis results indicate that the safe separations of the store can be achieved not only with the wing fixed but with the wings being deployed.

Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction (소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계)

  • Cheong, Cheol-Ung;Kim, Jae-Hyun;Kim, Sung-Tae;Park, Yong-Hwan;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

Optimization of a Fuel Cell Stack for Small Robot Systems (소형 로봇용 연료 전지 스택 설계 사양 최적화)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

A Numerical Study of Ventilation System Operation for Smoke Control in a Subway Station when a Train under Fire is Approaching (화재열차가 진입하여 정차하는 지하철 역사에서 제연을 위한 환기장치 운전에 대한 수치해석 연구)

  • Lee, Seung-Ho;Hur, Nahm-Keon;Cha, Chul-Hyun;Ryou, Hong-Sun;Kim, Dong-Hyeon;Jang, Yong-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.136-141
    • /
    • 2009
  • The platform screen door(PSD) is installed in the station of the Seoul Metro 9th line for passengers' safety and comfortable environment of the station. The track way exhaust system(TES) is also operated with PSD to exhaust heat released from train. TES can also be used for the purpose of the heat and smoke control in an emergency case of the carriage fire. When the fire is occurred, operation of TES is switched to the smoke exhaust mode form its normal ventilation mode. In the present study, a subway station of Seoul Metro 9th line is modeled, and a 3-D CFD simulation is performed to investigate effectiveness of designed TES in case of fire. A scenario that a train under fire is arriving the station is simulated for several possible operation modes of the TES using moving mesh technique. As a result, temperature and CO concentration distribution in the station is obtained for each operation modes of TES. The effectiveness of TES operation in case of fire is also discussed.

  • PDF

Study on the Unburned Carbon and NOx emission of High Moisture Coal (고수분탄의 건조에 따른 미연분 및 NOx 배출 특성에 관한 연구)

  • Ahn, Seok-Gi;Kim, Jung-Woo;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Unburned Carbon(UBC) and NOx emissions from High-moisture coal and Dried coal were investigated in Drop Tube Furnace(DTF). When the same amount of the High-moisture coal and Dried coal were oxidized in DTF, the results show that UBC and NOx emissions of Dried coal case is higher than High-moisture coal case. As the moisture in coal decreases from 40% to 10%, the average gas temperature increases but the moisture concentration in DTF decreases. As the wall temperature increases from $900^{\circ}C$ to $1500^{\circ}C$, the UBC decreases and NOx emissions increases. Especially, the difference for UBC between High-moisture coal and Dried coal decreases with increasing wall temperature.

A Study on Pilot Scale Cyclonic-DAF Reactor for Cyanobacteria Removal (남조류 제거를 위한 선회식 가압부상장치 현장 적용에 관한 연구)

  • Oh, Hong-Sok;Kang, Seon-Hong;Nam, Sook-Hyun;Kim, Eu-Ju;Koo, Jae-Wuk;Hwang, Tae-Mun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.17-28
    • /
    • 2018
  • Cyclonic-dissolved air flotation(Cyclonic-DAF), an advanced form of pressure flotation, applies a structure that enables the forming of twirling flows. This in turn allows for suspended matter to adhere to microbubbles and float to the surface of a treatment tank during the process of intake water flowing through a float separation tank. This study conducted a lab-scale test and pursued geometrical modeling using computational fluid dynamics(CFD) to establish a pilot scale design. Based on the design parameters found through the above process, a pilot cyclonic-DAF system($10m^3/hr$) for removing algae was created. Upon developing the pilot-scale cyclonic-DAF system, a type of algae coagulant(R-119) was applied as the coagulant to the system for field testing through which the removal rates of chlorophyll-a and cyanobacteria were evaluated. The chlorophyll-a and harmful cyanobacteria of the raw water at region B, the field-test site, were found to be $177.9mg/m^3$ and 652,500cells/mL respectively. Treated waters applied with 60mg/L and 100mg/L of algae coagulant presented removal efficiencies of approximately 95% and 97%, respectively. The cyanobacteria cell number of the treated waters applied with 60mg/L and 100mg/L of algae coagulant both that were equal to or less than 1,000cells/mL and were below attention level criteria for the issuance of algae boundary.

THD Analysis of a Surface Textured Parallel Thrust Bearing: Effect of Dimple Radius and Depth (Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 딤플 반경과 깊이의 영향)

  • Jeong, YoHan;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • In order to reduce friction and improve reliability, researchers have applied various surface texturing methods to highly sliding machine elements such as mechanical seals and piston rings. Despite extensive theoretical research on surface texturing, previous numerical results are only applicable to isothermal and iso-viscous conditions. Because the lubricant flow pattern of textured bearing surfaces is much more complicated than that for non-textured bearings, the Navier?Stokes equation is more suitable than the Reynolds equation for the former. This study carries out a thermohydrodynamic (THD) lubrication analysis to investigate the lubrication characteristics of a single micro-dimpled parallel thrust bearing cell. The analysis involves using the continuity, Navier?Stokes, energy, temperature?viscosity relation, and heat conduction equations with the commercial computational fluid dynamics (CFD) code FLUENT. This study discretizes these equations using the finite volume method and solves them using the SIMPLE algorithm. The results include finding the streamlines, pressure and temperature distributions, and variations in the friction force and leakage for various dimple radii and depths. Increasing the dimple radius and decreasing the depth causes a recirculation flow to form because of a strong vortex, and the oil temperature greatly increases compared with the non-textured case. The present numerical scheme and results are applicable to THD analysis of various surface-textured sliding bearings and can lead to further study.

Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System (수치해석을 이용한 바닥공조 시스템의 공기환경 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin;Lee, Won-Keun;Moon, Ki-Sun;Kim, Jongryul;Lee, Kwang-ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.