• Title/Summary/Keyword: CEC efficiency

Search Result 33, Processing Time 0.024 seconds

Immobilization of Styrene-acrylamide Co-polymer on Either Silica Particles or Inner Surface of Silica Capillary for the Separation of D-Glucose Anomers

  • Ali, Faiz;Kim, Yune Sung;Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.539-545
    • /
    • 2014
  • Styrene-acrylamide co-polymer was immobilized on porous partially sub-$2{\mu}m$ silica monolith particles and inner surface of fused silica capillary ($50{\mu}m$ ID and 28 cm length) to result in ${\mu}LC$ and CEC stationary phases, respectively, for separation of anomeric D-glucose derivatives. Reversed addition-fragmentation transfer (RAFT) polymerization was incorporated to induce surface polymerization. Acrylamide was employed to incorporate amide-functionality in the stationary phase. The resultant ${\mu}LC$ and CEC stationary phases were able to separate isomers of D-glucose derivatives with high selectivity and efficiency. The mobile phase of 75/25 (v/v) acetonitrile (ACN)/water with 0.1% TFA, was used for HPLC with a packed column (1 mm ID, 300 mm length). The effects of pH and ACN composition on anomeric separation of D-glucose in CEC have been examined. A mobile phase of 85/15 (v/v) ACN/30 mM sodium acetate pH 6.7 was found the optimized mobile phase for CEC. The CEC stationary phase also gave good separation of other saccharides such as maltotriose and Dextran 1500 (MW~1500) with good separation efficiency (number of theoretical plates ~300,000/m).

건축설비의 에너지보존 계획

  • 명현국
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.9
    • /
    • pp.56-62
    • /
    • 2000
  • 1997년 12월 일본 교토에서 개최된 COP3를 계기로 1999년 3월 에너지보존법이 대폭적으로 개정 및 강화되어졌다. 지구온난화의 주된 원인이 되는 이산화탄소는 에너지와 밀접한 관계를 가지고 있으므로, 에너지보존·자원보존의 추진은 지구온난화 대책의 추진과 동등한 의미를 가지고 있다고 하여도 과언이 아니다. 여기서는 건축설비계획의 관점에서 에너지보존법 개정의 요점과 그 대응책에 관해서 개요를 소개하였다.

  • PDF

A Study of Korean Efficiency of PV PCS (태양광 인버터의 한국형 전력변환 효율에 관한 연구)

  • Kim, Jeong-Hwan;Yu, Byung-Gyu;So, Jung-Hun;Lee, Ki-OK;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.356-360
    • /
    • 2009
  • Recent global environmental pollution and contamination and depletion of limited fossil energy prices surge as an energy source to replace it depending on wind, fuel cells and solar power and other renewable and pollution free renewable energy is of interest in increase. The photovoltaic systems are pollution-free, unlimited energy source, and easy to install because it is rated as the most valuable renewable energy sector and the prevalence is spreading throughout the world. Photovoltaic systems at one end of the stable development of the role that solar power inverter applications can be the most important. No matter how much power the solar arrays, even if the inverter output in the normally if he's no use. These photovoltaic inverters to evaluate the performance of the inverter efficiency measures that can be called directly. This way of measuring the efficiency of solar inverters in Europe efficiency and CEC efficiency is currently being used. In this paper, until now about how to measure the efficiency of solar power inverter technology and the new Korean Meteorological Solar Insolation data analysis to derive weights based on this inverter efficiency for Korea is to offer.

  • PDF

Applicability of Natural Zeolite with Different Cation Exchange Capacity as In-situ Capping Materials for Adsorbing Heavy Metals (중금속 흡착을 위한 원위치 피복소재로서 천연제올라이트의 양이온교환용량에 따른 적용성 평가)

  • Kang, Ku;Shin, Weon-Ho;Hong, Seong-Gu;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • We investigated the efficiency of natural zeolite with different cation exchange capacity (CEC) as capping material for the remediation of marine sediments contaminated with heavy metals. Three different zeolite with high CEC (HCzeo, 163.74 cmolc/kg), medium CEC (MCzeo, 127.20 cmolc/kg), and low CEC (LCzeo, 70.62 cmolc/kg) were used. The surface area of the zeolite was in decreasing order: HCzeo ($59.43m^2/g$) > MCzeo ($52.10m^2/g$) > LCzeo ($10.12m^2/g$). The results of mineralogical composition obtained from X-ray diffraction (XRD) show that LCzeo was mainly composed of quartz and albite. In the XRD result of MCzeo and HCzeo, the peaks of clinoptilolite, heulandite, and mordenite were also observed along with that of quartz and albite. Sorption equilibrium onto the HCzeo, MCzeo, and LCzeo was reached in 6 h at initial concentration of 10 mg/L and 100 mg/L. Higher adsorption of Cd and Zn onto the zeolite with higher CEC were achieved but adsorption of Cu and Ni were not dependent on the CEC of zeolite. It can be concluded that the zeolite with high cation exchange ability is recommended for the contaminated sediments with Cd and Zn but the inexpensive zeolite with low CEC for Cu and Ni.

Chemical Treatment of Low-level Radioactive Liquid Wastes(II) (The Determination of Cation Exchange Capacity on various Clay Minerals)

  • Lee, Sang-Hoon;Sung, Nak-Jun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • This experiment has been carried out to determine the pH dependent cation exchange capacity concerning the sorption phenomenon of long-lived radionuclides contained in low-level liquid radioactive waste on various clay minerals. The pH dependent cation exchange capacity determined by Sawhney's method are used to the analysis of sorption phenomenon. About 70 percent of the total cation exchange capacity is contributed by the pH dependent CEC due to the negative charge originated naturally in clays in case of clinoptilolite, vermiculite and sodalite. It is sugested in this test that the high neutral salt CEC, that is, highly charged clays would show good fixation yield. The removal of radionuclides at the pH range more than pH 9 is considered the hydroxide precipitation of metal ion rather than the cation exchange. The Na-clay prepared by the method of successive isomorphic substitution with electrolyte showed a considerable improvement in removal efficiency for the decontamination.

  • PDF

NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY (NIRS) IN PHYTOCHEMISTRY

  • Huck, C.W.;W.Guggenbichler;Bonn, G.K.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3114-3114
    • /
    • 2001
  • During the last years phytochemistry and phytopharmaceutical applications have developed rapidly and so there exists a high demand for faster and more efficient analysis techniques. Therefore we have established a near infrared transflectance spectroscopy (NIRS) method that allows a qualitative and quantitative determination of new polyphenolic pharmacological active leading compounds within a few seconds. As the NIR spectrometer has to be calibrated the compound of interest has at first to be characterized by using one or other a combination of chromatographic or electrophoretic separation techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), gas chromatography (GC) and capillary electrochromatography (CEC). Both structural elucidation and quantitative analysis of the phenolic compound is possible by direct coupling of the mentioned separation methods with a mass spectrometer (GC-MS, LC-MS/MS, CE-MS, CEC-MS) and a NMR spectrometer (LC-NMR). Furthermore the compound has to be isolated (NPLC, MPLC, prep. TLC, prep. HPLC) and its structure elucidated by spectroscopic techniques (UV, IR, HR-MS, NMR) and chemical synthesis. After that HPLC can be used to provide the reference data for the calibration step of the near infrared spectrometer. The NIRS calibration step is time consuming, which is compensated by short analysis times. After validation of the established NIRS method it is possible to determine the polyphenolic compound within seconds which allows to raise the efficiency in quality control and to reduce costs especially in the phytopharmaceutical industry.

  • PDF

Evaluation of the Removal Characteristics of Pollutants in Storm Runoff Depending on the Media Properties (여재 특성에 따른 강우 유출수 내 오염물질 제거특성 평가)

  • Kim, Tae-Gyun;Cho, Kang-Woo;Song, Kyung-Guen;Yoon, Min-Hyuk;Ahn, Kyu-Hong;Hong, Sung-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.483-490
    • /
    • 2009
  • The aims of this study were to evaluate the removal efficiency for various pollutants in urban storm runoff by a filtration device, and to determine design parameters depending on filter media properties. Appropriate selection of filter media will affect the size and life time of the filtration device. Sets of column tests were performed in order to evaluate the removal efficiency by perlite and a synthetic resin. An investigation of surface properties including CEC (cation exchange capacity) and zeta-potential suggested that the perlite had a superior adsorption capability for cationic pollutants. TCODcr and turbidity were analyzed to investigate the removal characteristic of particulate pollutant. In both columns, the particles in the collected storm runoff was almost completely capture with a small EBCT (empty bed contact time) of 2.5 minutes. Complete clogging at the EBCT of 2.5 minutes occurred after 630 minutes in the perlite column and 810 minutes in the resin column. The removal efficiency of TCODcr and turbidity at the EBCT of 2.5 minutes decreased to below 70% due to an wall effect. The removal efficiency for dissolved pollutant (SCODcr) was negligible due to the insufficient contact time for adsorption. The removal of heavy metals (Cu, Zn, Pb) was mostly ascribed to the filtration of particles containing metals, since the relationship between CEC and the removal efficiency was not apparent. The result of this study would be valuable for the application of filtration device to control of urban storm runoff.

Feasibility Study on Reactive Material in Permeable Reactive Barriers Against Contaminated Groundwater with Ammonium from Unsanitary Landfill (암모늄으로 오염된 비위생 매립지 주변지반의 지하수 정화를 위한 반응벽체내 물질 연구)

  • 이승학;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Batch and column tests were performed to develop the design factors for permeable reactive barriers(PRBs) against the contaminated groundwater with ammonium from unsanitary landfill. Clinoptilolite, one of natural zeolites having excellent cation exchange capacity(CEC), was chosen as the reactive material. In batch test, the reactivity of clinoptilolite to ammonium was examined by varying the initial concentration of ammonium and the particle size of clinoptilolites. One gram of clinoptilolite showed removal efficiency about 80% against the ammonium except in very high initial concentration of 80 ppm, but the effect of particle size of clinoptilolite was not noticeable. Permeability test was performed for the specimens made of clinoptilolite and Jumunjin sand with 20 : 80 weight ratio. Flexible wall permeameter was employed far permeability test. The specimen containing the washed 0.42-0.85mm clinoptilolite showed the highest permeability of about $10^{-3}$/s. In column test, the reactivity of mixed materials against ammonium in flowing condition was examined with the landfill leachate. With the test results, clinoptilolite was found to be a suitable material for PRBs against the contaminated groundwater with ammonium.

Effects of Irrigation Times and Soil Media on the Growth and Physiological Characteristics of Native Fern Asplenium scolopendrium (관수주기와 상토조성이 자생 골고사리(Asplenium scolopendrium)의 생육과 생리에 미치는 영향)

  • Ju, Jin-Hee;Bang, Kwang-Ja
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.109-116
    • /
    • 2005
  • This study was conducted to examine the growth and physiological characteristics of Asplenium scolopendrium native fern as affected by irrigation times and soil media as an environment modeled on habitate where was sunken-condition. 1. Light intensity was lower in sunken than in non-sunken, but air humidity was higher in sunken about $2040\%$. Soil moisture content was higher with the leaf mold in sunken irrigating 2 times/week. The results of chemical analysis of medium showed that EC, pH, organic matter content, total nitrogen, CEC, Exch-Ca, Exch-Mg and Exch-K were higher with leaf mold than sud: leafmold and field soil: sud: leaf mold. 2. In the case of irrigation 2 times/week Asplenium scolopendrium grew well sunken more than non-sunken. As non-sunken condition similar with, 7 times/week irrigation, plant height, frond width, frond length and stipe length increased. In case of soil media, growth of Asplenium scolopendrium was better with leaf mold than that of sand: leafmold or field soil: sand: leaf mold. 3. In the case of irrigation 2 times/week photosynthetic rate, $CO_2$ absorption rate and water efficiency were higher with non-sunken than that of sunken, expect of stomatal conduction, $CO_2$ use efficiency. The physiological characteristics of Asplenium scolopendrium were highest in non-sunken irrigating 7 times/week In case of soil media, physiological activity was higher with leaf mold than sand: leafmold or field soil: sand: leaf mold.