• Title/Summary/Keyword: CEC

Search Result 547, Processing Time 0.026 seconds

Differences in Soil Chemical Properties Under Multi-layer System, USGA System and Mono-layer System for a Sports Turf (스포츠용 잔디의 다단구조, USGA구조 및 단층구조 지반에서 토양 화학성 차이)

  • Kim, Kyoung-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.50-59
    • /
    • 2006
  • This study was initiated to investigate soil chemical properties under different soil systems. Data such as soil acidity(pH), electrical conductivity(EC), organic matter content(OMC), and cation exchange capacity(CEC) were analyzed with samples from multi-layer, USGA, and mono-layer systems. N, P, K and micronutrients were also measured. Multi-layer system was built up to 60-cm depth with rootzone layer, intermediate layer and two drainage layers. USGA system 45 centimeters deep was constructed with rootzone layer, intermediate layer and drainage layer. Mono-layer system, however, was made only with a 30-cm rootzone layer. Differences were observed in soil pH, EC, OMC, CEC and micronutrients. Soil pH was acceptable for turfgrass growth a year after establishment, being 5.5 to 6.5 in the study. Differences were greatly observed for EC among soil systems. Values of EC for multi-layer, USGA, and mono-layer systems were 39.79, 31.26 and 103.54 uS/em, respectively. The increase rate was approximately 4 to 8 times greater with mono-layer system than those with other two systems. Therefore, it was necessary to avoid micronutrient deficiency such as Fe, Mn etc. through an effective management program in mono-layer system because of its faster potential feasibility of salt accumulation. The greatest OMC was associated with USGA system, being 0.97% which was 11% over that of the other systems. Slight differences were observed for CEC among them. Mono-layer system produced 1.45 me/100g, 10.3% and 8.9% lower in CEC than those of multi-layer and USGA system, respectively. Micronutrients such as Fe, Zn, and Mn etc. were below the level required for turf growth, regardless of soil systems. It was considered that one year after turf establishment was not enough to build up micronutrients in sand-based soil systems to the normal level for a turf growth. These results demonstrate that intensive management program including grow-in concept fertilization should be integrated into sand-based soil systems, even after a year in establishment. Regular nutrient monitoring by soil analyses is a strong necessity to decide the kinds and amount of fertilizer. Also, strategic management program must be selectively employed according to sports turf soil systems.

Effects of Soil Organic Matter on Surface Charge Characteristics of Paddy and Upland Soils (논과 밭 토양의 표면전하 특성에 미치는 토양 유기물 영향)

  • Lim, Sook-Il;Lee, Moon-Yong;Hyun, Seung-Hun;Lee, Sang-Eun;Jeong, Chang-Yoon;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.414-419
    • /
    • 1998
  • The contribution of soil organic matter on the soil surface charge characteristic of paddy and upland soils weathered from granite or limestone was evaluated. The surface charge characteristics of the soils with and without soil organic matter by pre-treatment with hydrogen peroxide was determined at pH 3.5~9.0 range using the ion adsorption method. Regardless of soil organic matter removal, the soil surface negative charge increased linearly by the increase of pH with high statistical significance at all kinds of soils. Here, the differential increasement of soil surface negative charge by pH inclease, dCEC/dpH, was proposed as the parameter of pH dependency of the soil surface charge. The dCEC/dpH of soils with organic matter was in the range of 0.91~4.59, while it was dramatically decreased to the range 0.16~1.91 by the removal of organic matter. The soil surface charge derived from soil organic matter ranged from 15% to 82% to the total amount of surface charge. The magnitude of surface charge carried by 1% of soil organic matter showed considerable differences between soils from 0.22 to $5.03cmol^+\;kg^{-1}$. The effect of soil organic matte on the dCEC/dpH was higher in paddy soils with high oxalic acid extractable Fe than upland soils.

  • PDF

Distribution of Soil Fertility in Paddy Fields as Affected by Cultivation Methods and Topographical Regions (경작지대 및 재배방법에 따른 논토양의 비옥도 분포)

  • Kim, Dong-Jin;Kang, Da-Seul;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.595-604
    • /
    • 2015
  • Soil chemical properties in paddy fields were found to be varied depending upon different cultivation methods such as environmentally-friendly, conventional, and two-crop farming systems and different topographical regions, namely plain, middle mountainous, and reclaimed land regions. Overall soil pH was found to be in optimal range (pH 5.5~6.5) for rice cultivation, except with conventional cultivation fields of the reclaimed lands in Jeonnam province. Electrical conductivity (EC) was relatively higher in the two-crop cultivation fields than in others. However, the concentrations of available phosphate as $P_2O_5$ were exceptionally higher in the two-crop farming fields, thus in submerged paddy condition the phosphate could be released into streams and rivers. Soil organic matter (SOM) contents were mostly in optimal range ($25{\sim}30g\;kg^{-1}$) for paddy field in Jeonbuk province, but in Jeonnam province they were slightly higher values of the range. The concentrations of available silicate ($SiO_2$) were mostly depended on the cultivation methods and the region, but some of paddy fields contained extremely high $SiO_2$ concentration. Statistical relationships among the soil chemical properties showed as follows: Correlations between EC values and exchangeable cation concentrations, between SOM contents and CEC values, and between available $SiO_2$ concentrations and pH, EC, exchangeable cations, and CEC values were positively significant, whereas total nitrogen concentrations were significantly negatively correlated with the concentrations of exchangeable K and Mg. These results might be very useful to establish benchmark paddy fields contained with certain levels of soil fertility.

농약류 (1,2-dichlorobenzene, hexachlorocyclohexane)의 토양 흡착 특성 규명

  • 정현정;이민희;도원홍
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.338-341
    • /
    • 2003
  • 유기염소계 농약 중 대표적인 살충제 $\delta$-BHC(hexachlorocyclohexane)와 1, 2-DCB (1, 2-dichlorobenzene)에 대한 논, 밭 토양 및 풍화 토에 흡착 배치실험을 통하여 토양 특성과 유기오염물간의 흡착 관계를 규명하였다. 13개의 토양시료에 대하여 pH, CEC, 유기물 함량, 비표면적, 입도분석, 원소조성분석을 통하여 토양의 물리ㆍ화학적 특징이 토양 흡착에 미치는 영향을 규명하고자 하였다. 유기염소계 농약의 흡착량을 Freundlich isotherm으로 나타내어 흡착분배계수(K$_{d}$)를 산출하였다. $\delta$-BHC는 유기물 함량이 높은 soil-4$_{d}$에서 가장 높은 $K_{d}$ 값을 보였으며, 1,2-DCB의 경우 CEC, 비표면적이 가장 낮은 soil-5에서 낮은 $K_{d}$ 값을 보여 토양 내 유기물 함량과 비표면적이 유기오염물 흡착량에 중요한 요소로 작용함을 알 수 있었다.

  • PDF

Enantioseparation of Neutral Compounds on a Quinine Carbamate-Immobilized Zirconia in Reversed-Phase Capillary Electrochromatography

  • Lee, Mun-Rak;Gwon, Ju-Rim;Park, Jung-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.82-86
    • /
    • 2010
  • Quinine (QN) is a weak anion-exchange type chiral selector and QN-based silica stationary phases have been widely used for enantioseparation of acidic chiral analytes in HPLC and recently in CEC. In this work we report enantioseparation of non-acidic chiral analytes on a quinine carbamate-immobilized zirconia (QNZ) in reversed-phase (RP) CEC. Influences of pH, composition of the buffer, acetonitrile content and the applied voltage on enantioseparation were examined. Enantiomers of the analytes investigated are well separated in acetonitrile/phosphate buffer mobile phases. Separation data on QNZ were compared to those on QN-bonded silica (QNS). Retention was longer but better enantioselectivity and resolution were obtained on QNZ than QNS.

Effect of Cyanoethylation Pretreatment on the Sublimation Transfer Printing of Cotton Fabric (시아노에틸화 전처리가 면직물의 승화전사날염 공정에 미치는 영향)

  • Bae, Do Gyu
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.135-141
    • /
    • 2020
  • The primary and secondary alcohols in cellulose reacted with acrylonitrile(AN) in the presence of strong alkalis to form cyanoethylated cellulose. The partially cyanoethylated cotton(CEC) fabric with AN in the presence of aqueous sodium hydroxide solution was described, including effects of treatment time and reagent concentrations. The weight increases of cotton fabric were shown to be linearly related to the treatment time, temperature and concentration of sodium hydroxide. The physical properties such as shrinkage ratio and tensile strength were proportional to the weight increases without significant impact on elongation. But the moisture regain decreased with decreasing hydrophilicity. The degree of substitution(DS) and transfer ratio were linearly related to the weight increases. In the CEC with increasing weight up to 24.9%, it has been obtained with DS up to 0.63-0.67 cyanoethyl groups per anhydroglucose and transferring ratio up to 87.7%. The color fastness to washing by sublimation transfer printing was improved by the cyanoethylation.

A Communication Frame for Cooperative Engagement of Korean Navy Ships against Anti-ship Missiles (한국해군함정의 대함유도탄 협동교전을 위한 통신 프레임)

  • Kim, Jong-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.152-155
    • /
    • 2014
  • 현대전에서 C4ISR 및 PGM 능력 보유가 점점 중요해지는 만큼 무기체계 위협에 대응시간 또한 점차 짧은 시간을 요구하고 있다. 미 해군에서는 제1, 2차 세계대전을 통해 대공위협에 대한 협동 대응 필요성 자각이후 협동교전능력(CEC : Cooperative Engagement Capability)를 발전시켜왔지만 한국군에서는 아직 개념이 미개발되어 있는 상태이다. CEC의 여러 능력 성분 중에서 한국해군 수상전투단에서 가장 필요로 하는 요소가 가장 짧은 대응시간을 요구하는 대함유도탄 협동대응능력일 것이다. 이를 구현하기 위해 전투단내 함정 간 정보를 교환할 수 있는 통신프레임을 디자인하여 제시하고 실제 운용 가능성을 예측한다.

Physico-chemical Properties of the Bentonites Used for the Civil Engineering Works in Korea (국내 토목용 벤토나이트의 물리화학적 특성)

  • 황진연;박성완;황한석
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.127-137
    • /
    • 1997
  • Bentonites that are used currently for the civil engineering puppose in our country were investigated to reveal their physico-chemical properties such as viscosity, swelling volume, cation exchange capacity (CEC) and chemical composition, and to compare the content of their constituting minerals and their characteristics using the X-ray diffraction and infrared spectrum methods. The content of montmorillonite in the hentonites ranges from 50 to 79%. As the content of montmorillonite in the hentonites increases, the viscosity, swelling volume, water content, methylene blue adsorption, CEC, and the amount of clay-size particles tend to increase in general. Because these properties also show good correlation within them, the results can he used to infer the characteristics of hentonites indirectly. However, a few samples do not show this correlation hetween the properties. This is probably due to the characteristics of constituting minerals of raw ore and manufacturing process. A saraple with lowest content of rnontrnofiiionite was shown to be inferior in the physico-chemical properties that are needed for the civil engineering-purpose bentonites.

  • PDF

Influence of the Starting Materials and Sintering Conditions on Composition of a Macroporous Adsorbent as Permeable Reactive Barrier (초기 소재와 소성조건이 투수반응벽체인 대공극흡착제 조상에 미치는 영향)

  • Chung, Doug-Young;Lee, Bong-Han;Jung, Jae-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.239-248
    • /
    • 2009
  • In this investigation, we observed surface morphology and porosity of a macroporous adsorbent made of Na-bentonite and Ca-bentonite as structure formation materials and grounded waste paper as macropore forming material for the development of a permeable reactive barrier to remove heavy metals in groundwater. Therefore, we selected minerals having higher cation exchange capacity among 2:1 clay minerals and other industrial minerals because sintering can significantly influence cation exchange capacity, resulting in drastic decrease in removal of heavy metals. The results showed that the increasing sintering temperature drastically decreased CEC by less than 10 % of the indigenous CEC carried by the selected minerals. One axial compressibility test results showed that the highest value was obtained from 5% newspaper waste pulp for both structure formation materials of Na-bentonite and Ca-bentonite although there were not much difference in bulk density among treatments. The pore formation influenced by sintering temperature and period contributes removal of heavy metals passing through the sintered macroporous media having different water retention capacity.

A Basic Experimental Study on Composting of Garbage Wastes by Coconut Peat (코코넛 피트를 이용한 음식물 쓰레기의 퇴비화 기초실험)

  • Huh, Mock;Han, Ji-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 1999
  • This study was performed about composting in a batch reactor of laboratory scale using garbage waste and swine waste. Sawdust and coconut peat were materials to control optimum moisture, C/N ratio and specific gravity in the study. Comparing compost using only sawdust with compost using sawdust and coconut peat, the latter was higher at reduction rate and decomposition rate. Coconut peat was accelerated aerobic fermentation, because it had moisture holding ability, initial moisture was low, ventilation was good and control of optimum specific gravity was possible. Compost by only garbage waste was under standard of manure. but mixtures in same proportion of garbage waste and swine waste producted high quality compost. CEC value was average 63.8me/100g. The initial C/N ratio of compost was regulated effectively because of high C/N ratio of sawdust. As the C/N ratio(>40) was higher, reduction rate was higher. During the composting C/N ratio was improved more and more.

  • PDF