• Title/Summary/Keyword: CE

Search Result 3,199, Processing Time 0.03 seconds

Powder Synthesis and Membrane Deposition of BaCe0.9Y0.1O2.95 and SrCe0.9Y0.1O2.95 System for Hydrogen Separation Application (수소분리용 BaCe0.9Y0.1O2.95 및 SrCe0.9Y0.1O2.95 분말 합성 및 분리막 증착)

  • Kang, Kyung-Min;Yun, Young-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.759-764
    • /
    • 2011
  • Mixed-conducting oxide powders, $BaCe_{0.9}Y_{0.1}O_{2.95}$ (BCY) and $SrCe_{0.9}Y_{0.1}O_{2.95}$ (SCY) powders have been prepared by a solid-state reaction method. Xray diffraction patterns of the prepared powders showed the sharp peaks of the $BaCe_{0.9}Y_{0.1}O_{2.95}$ and $SrCe_{0.9}Y_{0.1}O_{2.95}$ phases. The oxide powders that were prepared by attrition milling showed rather large particles and severe necking between particles in FE-SEM images as well as residual reactant ($BaCO_3$) and secondary phases ($SrCeO_3$ and $CeO_2$) in XRD patterns. The oxide powders prepared using ball milling showed particles under approximately 500 nm and typical XRD patterns of the $BaCe_{0.9}Y_{0.1}O_{2.95}$ and $SrCe_{0.9}Y_{0.1}O_{2.95}$ phases. Ceramic membranes of the $BaCe_{0.9}Y_{0.1}O_{2.95}$ and $SrCe_{0.9}Y_{0.1}O_{2.95}$ phases were fabricated by the aerosol deposition method using the oxide powders synthesized.

Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts (M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응)

  • Seo, Ho Joon;Kim, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.720-725
    • /
    • 2017
  • M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and $447.3m^2/g$ and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that $Ce^{4+}$ and $Ce^{3+}$ on the surface catalyst have two oxidation states due to the lattice oxygen species ($O^{2-}$, $O^-$). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% $H_2$ and 21.7% CO at 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.

Physico-chemical effects of cerium oxide on catalytic activity of CeO2-TiO2 prepared by sol-gel method for NH3-SCR (CeO2가 졸겔법으로 합성한 CeO2-TiO2계 SCR용 촉매의 활성에 미치는 물리화학적 영향)

  • Kim, Buyoung;Shin, Byeongkil;Lee, Heesoo;Chun, Ho Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.320-324
    • /
    • 2013
  • The effects of $CeO_2$ on catalytic activity of $CeO_2-TiO_2$ for the selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyseis. $CeO_2-TiO_2$ catalysts were synthesized with three different additions, 10, 20, and 30 wt% of $CeO_2$, by the sol-gel method. The XRD peaks of all specimens were assigned to a $TiO_2$ phase (anatase) and the peaks became broader with the addition of $CeO_2$ because it was dispersed as an amorphous phase on the surface of $TiO_2$ particles. The specific surface area of $TiO_2$ increased with the addition of $CeO_2$ from $60.6306m^2/g$ to $116.2791m^2/g$ due to suppression of $TiO_2$ grain growth by $CeO_2$. The 30 wt% $CeO_2-TiO_2$ catalyst, having the strongest catalytic acid sites ($Br{\Phi}nsted$ and Lewis), showed the highest $NO_x$ conversion efficiency of 98 % at $300^{\circ}C$ among the specimens. It was considered that $CeO_2$ contributes to the improvement of the $NO_x$ conversion of $CeO_2-TiO_2$ catalyst by increasing specific surface area and catalytic acid sites.

CO Oxidation Over Pt Supported on Al-Ce Mixed Oxide Catalysts with Different Mole Ratios of Al/(Al+Ce) (서로 다른 몰비의 Al/(Al+Ce)를 가진 Al-Ce 혼합산화물에 담지된 Pt 촉매 상에서의 일산화탄소 산화반응)

  • Park, Jung-Hyun;Cho, Kyung-Ho;Kim, Yun-Jung;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.166-174
    • /
    • 2011
  • The xAl-yCe oxide catalysts with different mol ratios of Al/(Al+Ce) were prepared by a co-precipitation method and Pt supported on xAl-yCe oxide catalysts were synthesized by an incipient wetness impregnation method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $H_2$/CO-temperature programmed reduction ($H_2$/CO-TPR) to correlate with catalytic activities in co oxidation. Among the catalysts studied here, Pt/1Al-9Ce oxide catalyst showed the highest activity in dry and wet reaction conditions and the catalytic activity showed a typical volcano-shape curve with respect to Al/(Al+Ce) mol ratio. When the presence of 5% water vapor in the feed, the temperature of $T_{50%}$ was shifted ca. $30^{\circ}C$ to lower temperature region than that in dry condition. From CO-TPR, the desorption peak of $CO_2$ on Pt/1Al-9Ce oxide catalyst showed the highest value and well correlated the catalytic performance. It indicates that the Pt/1Al-9Ce oxide catalyst has a large amount of active sites which can be adsorbed by co and easy to supplies the needed oxygen. In addition, the amount of pentacoordinated $Al^{3+}$ sites obtained through $^{27}Al$ NMR analysis is well correlated the catalytic performance.

Complete Combustion of Benzene over CuO/CeO2 Catalysts Prepared by Various Methods (다양한 방법으로 제조된 CuO/CeO2 촉매에서의 벤젠의 연소반응)

  • Jung, Won Young;Song, Young In;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.128-133
    • /
    • 2013
  • Catalytic combustion of benzene over $CeO_2$-supported copper oxides has been investigated. The supported copper oxides catalysts were prepared using ball mill method and characterized by XRD, FT-IR, TEM and TPR. In the CuO/$CeO_2$ catalysts prepared using ball mill method, highly dispersed copper oxide species were shown at high loading ratio. The CuO/$CeO_2$ prepared using ball mill method showed the higher activity than those prepared using impregnation method. The catalytic activity increased with an increase in the CuO loading ratio, 10 wt% loaded CuO/$CeO_2$ catalyst giving the highest activity. In addition, the promoting of 10 wt% loaded CuO/$CeO_2$ catalyst with $Fe_2O_3$ and CoO enhanced the dispersion of CuO and then increased the catalytic activity.

Synthesis and electrochemical characterization of nano structure $CeO_2$ (나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석)

  • Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF

Optimization of Co-precipitated $CeO_2-ZrO_2$ Supports for Water-Gas Shift Reaction to Produce High Purity Hydrogen (고순도 수소 생산을 위한 WGS 반응용 $CeO_2-ZrO_2$ 담체 최적화)

  • Jeong, Dae-Woon;Eum, Ic-Hwan;Yoo, Byung-Chul;Koo, Kee-Young;Yoon, Wang-Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.757-760
    • /
    • 2009
  • 최근 들어 WGS 반응은 Pt과 같은 귀금속 촉매를 다양한 담체에 담지하여 낮은 온도에서 높은 활성을 지닌 촉매를 제조하기 위한 연구가 활발히 진행되고 있다. WGS 반응에서 귀금속 촉매가 높은 활성을 가지기 위해서 높은 산소저장능력(Oxygen Storage Capacity)과 산화환원능력(Redox)을 지닌 담체 개발이 필요하다. Ce-$ZrO_2$ 담체는 구조적으로 안정하며 높은 산소저장능을 가지고 있는 것으로 알려져 있다. Ce-$ZrO_2$ 구조는 Ce/Zr 비에 따라 다양한 변화가 생긴다. Ce/Zr 비가 6/4, 8/2인 경우 입방구조(Cubic)를 가지며 2/8인 경우 정방입계(Tetragonal)구조를 가진다. 이것은 담체 특성의 변화를 의미한다. 따라서, WGS 반응용 최적 담체를 선정하기 위해 Ce/Zr 비를 제조변수로 하여 담체특성을 분석하였다. 제조된 모든 담체는 공침법(Co-precipitation)을 사용하여 제조하였으며 $500^{\circ}C$에서 6시간 소성하였다. 담체 특성분석은 BET, XRD를 이용하였다. 추가적으로 제조변수를 다양화하여 담체 제조를 마쳤으며 특성분석이 진행 중이다. 분석 결과 $Ce_{0.2}Zr_{0.8}O_2$ 담체가 가장 넓은 표면적을 가지고 있으며 Ce/Zr 비가 높아질수록 표면적이 감소하는 경향을 나타내었다. Ce-$ZrO_2$ 담체의 나노결정크기는 Ce/Zr 비가 작아질수록 결정크기가 감소하는 경향을 나타내었으며 $Ce_{0.2}Zr_{0.8}O_2$가 Ce-$ZrO_2$ 담체 중에서 가장 작은 결정크기를 나타내어 3nm 이하의 나노-담체가 제조되었음을 확인하였다.

  • PDF

A Study on Na effect of Pt-Na/Ce(1-x)Zr(x)O2 Catalyst Structure for WGS Reaction (WGS 반응에서 Pt-Na/Ce(1-x)Zr(x)O2 촉매의 구조에 따른 Na 영향에 대한 연구)

  • Shim, Jae-Oh;Jeong, Dae-Woon;Jang, Won-Jun;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.654-659
    • /
    • 2012
  • The interest in water gas shift (WGS) reaction has grown significantly, as a result of the recent advances in fuel cell technology and the need to develop small-scale fuel processors. Recently, researchers have tried to overcome the disadvantages of the commercial WGS catalysts. As a consequence, supported Pt catalysts have attracted a lot of researchers due to high activity and stability for WGS at low temperatures. In this study, $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts with various Ce/Zr ratio have been applied to WGS at a gas hourly space velocity (GHSV) of $45,515h^{-1}$. According to TPR patterns of $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts, the reducibility increases with decreasing the $ZrO_2$ content. As a result, Cubic structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts exhibited higher CO conversion than tetragonal structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts. Expecially, Pt-Na/$CeO_2$ exhibited the highest CO conversion as well as 100% selectivity to $CO_2$. Moreover, Pt-Na/$CeO_2$ catalyst showed relatively stable activity with time on stream. The high activity of cubic structure Pt-Na/$CeO_2$ catalyst was correlated to its higher oxygen storage capacity (OSC) of $CeO_2$ and easier reducibility of Pt/$CeO_2$.

Synthesis of Nano Size $BaCeO_3$ as an Effective Flux Pining Center for YBCO Superconductor (YBCO 초전도체의 효과적인 플럭스 피닝 센터로서의 나노 크기 $BaCeO_3$ 합성)

  • Youn, J.S.;No, K.S.;Kim, Y.H.;Jun, B.H.;Lee, J.P.;Jung, S.Y.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.12-16
    • /
    • 2008
  • In this work, nano size $BaCeO_3$, which is a possible flux pinning medium of melt processed $YBa_{2}Cu_{3}O_x$ superconductor, was synthesized by the conventional solid state reaction method using powders. $BaCeO_3$ and $CeO_2$ were mixed thoroughly using a ball milling for 24 hours and calcined at $1200^{\circ}C$ for 5 hours for the formation $BaCeO_3$ powder. The obtained $BaCeO_3$ powder was attrition milled at various milling times of 60 min, 120 min and 240 min. The $BaCeO_3$ powders of various milling times were mixed with $YBa_{2}Cu_{3}O_x$ powder. Seed melt processed $YBa_{2}Cu_{3}O_x$-$BaCeO_3$ (15wt.%) superconductors were prepared and the superconducting properties were investigated. It was found that $T_c$ of $Y_{1.5}Ba_{2}Cu_{3}O_x$ samples was not significantly affected by $BaCeO_3$ addition, but $J_c$ of samples was increased by $BaCeO_3$ addition. The $J_c$ improvement by fine $BaCeO_3$ powder (120 min attrition-milled) was effective at low magnetic fields less than 2 T.

  • PDF

Properties of $Y_{2-x}SiO_{5}:Ce_{x}^{3+}$ Phosphor Powder Prepared by Sol-gel Process (Sol-gel법에 의한 $Y_{2-x}SiO_{5}:Ce_{x}^{3+}$ 형광체 제조와 그 특성)

  • Kim, Sang-Mun;Kang, Kyoung-Tae;Kim, Tae-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.794-798
    • /
    • 2001
  • $Y_{2-x}SiO_5:Ce_x^{3+}$(x=0.002∼0.04) phosphors were prepared by sol-gel process, amorphous crystal phase was observed in calcining dry gel at 800$^{\circ}$C, but pure $X_2$ type of type $Y_2SiO_5$ phase appeared from heat treatment above 1000$^{\circ}$C. Light absorption of tye $Y_2SiO_5$ host lattice occurred at 230∼360nm, and light absorption of the $Y_{2-x}SiO_5:Ce_x^{3+}$ phosphors was observed at 300∼400nm in adding $Ce^{3+}$. $Y_{2-x}SiO_5:Ce_x^{3+}$ phosphors showed maximum emission shoulder at 436nm. Maximum CL intensities of $Y_{2-x}SiO_5:Ce_x^{3+}$ were observed in adding 0.025 $Ce^{3+}$ and the phosphor showed x=0.161, y=0.124 in color coordinate of CIE1931.

  • PDF