• Title/Summary/Keyword: CDSS(Clinical Decision Support System)

Search Result 25, Processing Time 0.019 seconds

Classification models for chemotherapy recommendation using LGBM for the patients with colorectal cancer

  • Oh, Seo-Hyun;Baek, Jeong-Heum;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.9-17
    • /
    • 2021
  • In this study, we propose a part of the CDSS(Clinical Decision Support System) study, a system that can classify chemotherapy, one of the treatment methods for colorectal cancer patients. In the treatment of colorectal cancer, the selection of chemotherapy according to the patient's condition is very important because it is directly related to the patient's survival period. Therefore, in this study, chemotherapy was classified using a machine learning algorithm by creating a baseline model, a pathological model, and a combined model using both characteristics of the patient using the individual and pathological characteristics of colorectal cancer patients. As a result of comparing the prediction accuracy with Top-n Accuracy, ROC curve, and AUC, it was found that the combined model showed the best prediction accuracy, and that the LGBM algorithm had the best performance. In this study, a chemotherapy classification model suitable for the patient's condition was constructed by classifying the model by patient characteristics using a machine learning algorithm. Based on the results of this study in future studies, it will be helpful for CDSS research by creating a better performing chemotherapy classification model.

VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram (VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구)

  • Kim, Sung-Chul;Yu, Hwan-Jo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.722-729
    • /
    • 2010
  • Prediction problems are widely used in medical domains. For example, computer aided diagnosis or prognosis is a key component in a CDSS (Clinical Decision Support System). SVMs with nonlinear kernels like RBF kernels, have shown superior accuracy in prediction problems. However, they are not preferred by physicians for medical prediction problems because nonlinear SVMs are difficult to visualize, thus it is hard to provide intuitive interpretation of prediction results to physicians. Nomogram was proposed to visualize SVM classification models. However, it cannot visualize nonlinear SVM models. Localized Radial Basis Function (LRBF) was proposed which shows comparable accuracy as the RBF kernel while the LRBF kernel is easier to interpret since it can be linearly decomposed. This paper presents a new tool named VRIFA, which integrates the nomogram and LRBF kernel to provide users with an interactive visualization of nonlinear SVM models, VRIFA visualizes the internal structure of nonlinear SVM models showing the effect of each feature, the magnitude of the effect, and the change at the prediction output. VRIFA also performs nomogram-based feature selection while training a model in order to remove noise or redundant features and improve the prediction accuracy. The area under the ROC curve (AUC) can be used to evaluate the prediction result when the data set is highly imbalanced. The tool can be used by biomedical researchers for computer-aided diagnosis and risk factor analysis for diseases.

AptaCDSS - A Cardiovascular Disease Level Prediction and Clinical Decision Support System using Aptamer Biochip (AptaCDSS - 압타머칩을 이용한 심혈관질환 질환단계 예측 및 진단의사결정지원시스템)

  • Eom, Jae-Hong;Kim, Byoung-Hee;Lee, Je-Keun;Heo, Min-Oh;Park, Young-Jin;Kim, Min-Hyeok;Kim, Sung-Chun;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.28-32
    • /
    • 2006
  • 최근 연구결과에 의하면 심장질환을 포함한 심혈관질환은 성별에 관계없이 미국 및 전 세계적으로 질병사망의 주요 원인으로 조사되었다. 본 연구에서는 보다 효율적으로 진단하기 위해 진단의사 결정 보조시스템에 대해서 다룬다. 개발된 시스템은 혈청 내의 특정 단백질의 상대적 양을 측정할 수 있는 바이오칩인 압타머칩을 이용해 생성한 환자들의 칩 데이터를 Support Vector Machine, Neural Network, Decision Tree, Bayesian Network 등의 총 4가지 기계학습 알고리즘으로 분석하여 질환단계를 예측하고 진단을 위한 보조정보를 제공한다. 논문에서는 총 135개 샘플로 구성된 3K 압타머칩 데이터에 대해 측정된 초기 시스템의 질환단계 분류성능을 제시하고 보다 유용한 진단의사결정 보조 시스템을 구성하기 위한 요소들에 대해서 논의한다.

  • PDF

Research Trend Analysis by using Text-Mining Techniques on the Convergence Studies of AI and Healthcare Technologies (텍스트 마이닝 기법을 활용한 인공지능과 헬스케어 융·복합 분야 연구동향 분석)

  • Yoon, Jee-Eun;Suh, Chang-Jin
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.123-141
    • /
    • 2019
  • The goal of this study is to review the major research trend on the convergence studies of AI and healthcare technologies. For the study, 15,260 English articles on AI and healthcare related topics were collected from Scopus for 55 years from 1963, and text mining techniques were conducted. As a result, seven key research topics were defined : "AI for Clinical Decision Support System (CDSS)", "AI for Medical Image", "Internet of Healthcare Things (IoHT)", "Big Data Analytics in Healthcare", "Medical Robotics", "Blockchain in Healthcare", and "Evidence Based Medicine (EBM)". The result of this study can be utilized to set up and develop the appropriate healthcare R&D strategies for the researchers and government. In this study, text mining techniques such as Text Analysis, Frequency Analysis, Topic Modeling on LDA (Latent Dirichlet Allocation), Word Cloud, and Ego Network Analysis were conducted.

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.