• Title/Summary/Keyword: CDK-1

Search Result 304, Processing Time 0.026 seconds

Inhibition of CDK4 activity by 7-chloro-4-nitro-benzo[1,2,5]oxadiazole 1-oxide (7-Chloro-4-nitro-benzo[1,2,5]oxadliazole 1-oxide의 CDK4 활성저해)

  • Jeon Yong-Jin;Ko Jong Hee;Yeon Seung Woo;Kim Tae-Yong
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • The activation of cyclin dependent kinase 4 (CDK4) is found in more than half of all human cancers. Therefore CDK4 is an attractive target for the development of a novel anticancer agent. For mass screening of CDK4 inhibitor, we set up in vitro kinase assay for CDK4 activity using a cyclin D1-CDK4 fusion protein, which is constitutively active and exhibits enhanced stability. From the screening of representative compound library of Korea Chemical Bank, we found that 7-chloro-4-nitro-benzo[1,2,5]oxadiazole 1-oxide (FBP-1248) selectively inhibited CDK4 activity in vitro by ATP competitive manner. This compound prevented the phosphorylation of retinoblatsoma tumor suppressor protein, Rb, and inhibited cell growth through cell cycle arrest. In summary, we developed an efficient assay system for CDK4 activity in vitro and identified the CDK4 inhibitory compound, FBP-1248.

The Role of Cell Cycle Regulators in Normal and Malignant Cell Proliferation

  • Lee, Jin-Hwa
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.71-74
    • /
    • 2010
  • Cell proliferation is governed by precise and orderly process the regulation of which involves many different proteins. The key enzyme for cell growth and arrest is cyclin dependent kinases (cdks). In human cells, several cdks orchestrate four distinct cell cycle phases (M, $G_1$, S and $G_2$ ) and they sequentially operate in an order of cdc1, cdk4, cdk6 and cdk2. The regulatory components of cdks consist of cyclins and two family of cdk inhibitors, INK4 (inhibitors of cdk4) and KIP (kinase inhibitor protein). $G_1$ regulatory molecules for cdk mainly respond to environmental cues of mitogenic and anti-mitogenic stimuli and therefore influence activities of $G_1$ cdks, namely, cdk4/6 and cdk2. $G_1$ inhibitors include $p21^{CIP}$ and $p27^{KIP1}$. Between them, $p27^{KIP1}$ has attracted attentions of many researchers because of its characteristic regulatory features and diverse functions. Besides, the role of $p27^{KIP1}$ in cancer development warrants further studies in the future. Therefore, this review will focus on the recent findings and especially on the complexity of regulatory mechanisms of $p27^{KIP1}$.

The Anti-Proliferation Effects and Its Mechanism of Bupleurum falcatum on Human Mesangial Cell (시호의 사구체 메산지움 세포 증식억제 효능 및 작용기전 연구)

  • Lee, Byung-Cheol;Ahn, Young-Min;Doo, Ho-Kyung;Ahn, Se-Young
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.9-17
    • /
    • 2004
  • Objective : Mesangial cell proliferation and excessive accumulation of extracellular matrix (ECM) proteins is the common pathologic feature of glomerulosclerosis, and platelet-derived growth factor (PDGF) BB-chain, transforming growth factor betal $(TGF-{\beta}1)$, cyclin dependent kinases (CDK) and CDK inhibitors mediated in these pathophysiological processes. Bupleurum falcatum which is one of the most widely used components in traditional oriental medicines, has multiple pharmacological effects, such as antipyretic, analgesic, immune modulating, anti-inflammatory, anti-allergic, anti-thrombotic, anti-atherosclerotic, and antitussive effects. Methods : In this study, we evaluated the influence of Bupleurum falcatum on mesangial cell proliferation, DNA synthesis and expression of PDGF-BB chain, $TGF-{\beta}1$, CDKI, CDK2, CDK4, p21 and p27 in fetal bovine serum (FBS)-activated human mesangial cell. Results : Bupleurum falcatum reduced the mesangial cell proliferation and DNA synthesis more than control and captopril. And in the ELISA analysis of $TGF-{\beta}1$, and RT-PCR of PDGF-BB chain, CDK1, CDK2, CDK4, p21, and p27, Bupleurum falcatum inhibited the expression of $TGF-{\beta}1$ protein and PDGF-BB, CDK1, CDK2 gene and promoted that of p21 gene in a dose-dependent manner in comparing with control and captopril. Conclusions: These results suggest that Bupleurum falcatum may inhibit the mesangial cell proliferation and DNA synthesis by regulation of PDGF-BB and $TGF-{\beta}1$ expressions, and by modulation of CDK1, CDK2 and p21 expression.

  • PDF

NF-Y binds to both G1- and G2-specific cyclin promoters; a possible role in linking CDK2/Cyclin A to CDK1/Cyclin B

  • Chae, Hee-Don;Kim, Jung-Bin;Shin, Deug-Y.
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.553-557
    • /
    • 2011
  • We previously reported that CDK2/Cyclin A can phosphorylate and activate the transcription factor NF-Y. In this study, we investigated a potential regulatory role for NF-Y in the transcription of Cyclin A and other cell cycle regulatory genes. Gel-shift assays demonstrate that NF-Y binds to CCAAT sequences in the Cyclin A promoter, as well as to those in the promoters of cell cycle G2 regulators such as CDC2, Cyclin B and CDC25C. Furthermore, expression of Cyclin A increases NF-Y's affinity for CCAAT sequences in the CDC2 promoter; however, Cyclin A's induction of CDC2 transcription is antagonized by p21, an inhibitor of CDK2/Cyclin A. These results suggest a model wherein NF-Y binds to and activates transcription from the Cyclin A promoter, increasing cellular levels of Cyclin A/CDK2 and potentiating NF-Y's capacity for transcriptional transactivation, and imply a positive feedback loop between NF-Y and Cyclin A/CDK2. Our findings are additionally indicative of a role for Cyclin A in activating Cyclin B/CDK1 through promoting NF-Y dependent transcription of Cyclin B and CDC2; NF-Y mediated crosstalk may therefore help to orchestrate cell-cycle progression.

PP2A function toward mitotic kinases and substrates during the cell cycle

  • Jeong, Ae Lee;Yang, Young
    • BMB Reports
    • /
    • v.46 no.6
    • /
    • pp.289-294
    • /
    • 2013
  • To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation.

Gene expression profiles of skin from cyclin dependent kinases 5-knockdown mice

  • Shanshan Yang;Dingxing Jiao;Tao Song;Ping Rui;Ruiwen Fan;Zengjun Ma
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.567-575
    • /
    • 2024
  • Objective: This study aimed to identify genes regulated by cyclin dependent kinases 5 (CDK5) that participate in hair pigmentation in mice. Methods: The mRNA expression profiles of skin samples from CDK5-knockdown mice were constructed using high-throughput RNA sequencing and compared with those of wild-type mice. Results: In total, 8,002 known genes were differentially expressed between CDK5-knockdown and wild-type mice. Of these, 3,658 were upregulated and 4,344 were downregulated in the skin of CDK5-knockdown mice. An additional 318 previously unknown genes were also differentially expressed, with 171 downregulated and 147 upregulated genes in the skin of CDK5-knockdown mice. Of the known genes expressed in mouse skin, 80 were associated with hair color, with 61 showing lower expression and 19 exhibiting higher expression in skin of CDK5-knockdown mice. Importantly, the expression of the tyrosinase-related protein 1 (TYRP1) and the calcium signaling pathway were also found to be regulated by CDK5, suggesting that pigmentation is regulated by CDK5 via the calcium signaling pathway and TYRP1. Conclusion: The transcriptome profiles obtained from the skin of CDK5-knockdown mice compared to wild-type mice provide a valuable resource to help understand the mechanism by which CDK5 regulates melanogenesis in mice and other animals.

Effects of BMI-1026, A Potent CDK Inhibitor, on Murine Oocyte Maturation and Metaphase II Arrest

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • Previous studies have shown that BMI-1026 is a potent inhibitor of the cyclin-dependent kinases (cdk). In cell culture, the compound also arrests G2/M strongly and G1/S and S weakly. Two key kinases, cdk1 (p34cdc2 kinase) and mitogen-activated protein (MAP) kinase (erk1 and 2), perform crucial roles during oocyte maturation and, later, metaphase II (MII) arrest. In mammalian oocytes, both kinases are activated gradually around the time of germinal vesicle breakdown (GVBD) and maintain high activity in eggs arrested at metaphase II. In this study, we examined the effects of BMI-1026 on GVBD and MII arrest in mouse oocytes. BMI-1026 inhibited GVBD of immature oocytes and activated MII-arrested oocytes in a concentration-dependent manner, with more than 90% of oocytes exhibiting GVBD inhibition and MII activation at 100 nM This is approximately 500$\sim$1,000 times more potent than the activity reported for the cdk inhibitors roscovitine (${\sim}50{\mu}M$) and butyrolactone (${\sim}100{\mu}M$). Based on the results of previous in vitro kinase assays, we expected BMI-1026 to inhibit only cdk1 activation in oocytes and eggs, not MAP kinase. However, in our cell-based system, it inhibited the activity of both kinases. We also found that the effect of BMI-1026 is reversible. Our results suggest that BMI-1026 inhibits GVBD and activates MII-arrested oocytes efficiently and reversibly and that it also inhibits both cdk1/histone HI kinase and MAP kinase in mouse oocytes.

Anti-inflammatory, Anti-glycation, Anti-tyrosinase and CDK4 Inhibitory Activities of Alaternin (=7-Hydroxyemodin)

  • Bhatarrai, Grishma;Choi, Jeong-Wook;Seong, Su Hui;Nam, Taek-Jeong;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.27 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • The aim of this study was to anatomize the therapeutic potential of alaternin (=7-hydroxyemodin) against inflammation, advanced glycation end products (AGEs) formation, tyrosinase, and two cyclin-dependent kinases (CDKs), CDK2 and CDK4, and compare its potency with emodin. Alaternin showed lower cytotoxicity and higher dose-dependent inhibition against lipopolysaccharide (LPS) induced nitric oxide (NO) production with half maximal inhibitory concentration (IC50) of 18.68 µM. Similarly, alaternin efficaciously inhibited biotransformation of fluorescent AGEs and amyloid cross-β structure on the bovine serum albumin (BSA)-glucose-fructose system, five times more than emodin. Interestingly, alaternin also showed selective activity against CDK4 at 170 µM, whereas emodin inhibited both CDK2 and CDK4 at a concentration of 17 and 380 µM respectively. In addition, alaternin showed dose-dependent inhibitory activity against mushroom tyrosinase with inhibition percentage of 35.84 % at 400 µM. Altogether, alaternin with pronounced inhibition against inflammatory mediator (NO), glycated products formation, and targeted inhibition towards CDK4 receptor can be taken as an important candidate to target multiple diseases.

Searching of Cyclin-Dependent Kinase 4/Cyclin D1 Enzyme Inhibition Materials from the Native Plants (자생 식물로 부터 Cyclin-dependent Kinase 4/Cyclin D1 저해물질의 탐색)

  • Kim, Mi-Ran;Ha, Ji-Hong;Kwon, Byung-Mok;Chung, Ha-Won;Ahn, Byung-Tae;Ryu, Shi-Yong;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.174-178
    • /
    • 2000
  • To search CDK4/Cyclin D1 enzyme inhibition materials, methanol extracts of native eighty seven plant species in thirty seven families were screened in vitro for their inhibiting activities against CDK4/Cyclin D1 enzyme which are control to the normal cell division cycle in human body. Extracts of Paeonia suffruticosa, Saurus chinensis, Sanguisorba officinalis and Celastrus orbiculatus among them significantly inhibited above fifty percent $(in\;5\;{\mu}g/ml)$ against CDK4/ Cyclin D1 enzyme. Especially, the extracts of P. suffruticosa and S. officinalis showed moderately strong inhibition. Also, cryptotanshinone was identified as active compound from a extracts of Salvia mitiorrhiza by spectroscopic analyses including 2D NMR experiments.

  • PDF

Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase

  • Yoon, In-Soo;Chung, Ji-Hyung;Hahm, Soo-Hyun;Park, Min-Ju;Lee, You-Ri;Ko, Sung-Il;Kang, Lin-Woo;Kim, Tae-Sung;Kim, Joon;Han, Ye-Sun
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.529-534
    • /
    • 2011
  • Ribosomal protein S3 (rpS3) is a multifunctional protein involved in translation, DNA repair, and apoptosis. The relationship between rpS3 and cyclin-dependent kinases (Cdks) involved in cell cycle regulation is not yet known. Here, we show that rpS3 is phosphorylated by Cdk1 in G2/M phase. Co-immunoprecipitation and GST pull-down assays revealed that Cdk1 interacted with rpS3. An in vitro kinase assay showed that Cdk1 phosphorylated rpS3 protein. Phosphorylation of rpS3 increased in nocodazole-arrested mitotic cells; however, treatment with Cdk1 inhibitor or Cdk1 siRNA significantly attenuated this phosphorylation event. The phosphorylation of a mutant form of rpS3, T221A, was significantly reduced compared with wild-type rpS3. Decreased phosphorylation and nuclear accumulation of T221A was much more pronounced in G2/M phase. These results suggest that the phosphorylation of rpS3 by Cdk1 occurs at Thr221 during G2/M phase and, moreover, that this event is important for nuclear accumulation of rpS3.