• 제목/요약/키워드: CD8+ T cells

검색결과 468건 처리시간 0.027초

Tumor Induces the Expansion of Foxp3+CD25high and CD11b+Gr-1+ Cell Population in the Early Phase of Tumor Progression

  • Lee, Na Kyung;Kim, Hong Sung
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.172-180
    • /
    • 2015
  • It is well reported that tumor cells can regulate host immune systems. To identify the detailed changes of immune cells between tumor bearing mice and normal mice, we evaluated the systemic immune cell phenotype of B16F10 tumor bearing mice in a time dependent manner. The lymphocytic population (CD4+ and CD8+ T cells) of tumor bearing mice significantly decreased compared to that of normal mice. We found that the Foxp3+CD25+ CD4 T cell decreased, but the Foxp3+$CD25^{high}$ CD4 T cell significantly increased. All subpopulations of CD8 T cells decreased, except the CD62L-CD44+ CD8 T cell subpopulation. The myeloid cell population (CD11b+ and Gr-1+ cells) of tumor bearing mice significantly increased. Specifically, Foxp3+$CD25^{high}$ CD4 T cell and CD11b+Gr-1+ cells significantly increased in early phase of tumor progression. These results are helpful to understand the change of the systemic immune cell subpopulation of tumor bearing mice in a time-dependent manner.

HLA-restricted and Antigen-specific CD8+ T Cell Responses by K562 Cells Expressing HLA-A*0201

  • Yun, Sun-Ok;Sohn, Hyun-Jung;Yoon, Sung-Hee;Choi, Hee-Baeg;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.179-184
    • /
    • 2006
  • Background: Identification of antigen-specific T cells has yielded valuable information on pathologic process and the disease state. Assays for quantification of inflammatory cytokines or lytic-granule molecules have been generally used to evaluate antigen specific T cell response, however their applicability have been hampered due to the limited source of autologous antigen-presenting target cells (APC). Methods: K562, a leukemic cell line deficient of human leukocyte antigen (HLA), was transfected with a gene encoding HLA-A*02 (K562/ A*02) and its function as stimulator cells in inducing activation of HLA-matched T cells was evaluated by IFN-${\gamma}$ enzyme linked immunospot (ELISPOT) assay. Results: The stable transfectant K562/ A*02 pulsed with HLA- A*02 restricted peptide could specifically induce IFN-${\gamma}$ secretion by CD8+ T cells compared to no detectable secretion by CD4+ T cells. However, CD56+ NK cells secreted IFN-${\gamma}$ in both K562/ A*02 with peptide and without peptide. The number of IFN-${\gamma}$ secreted CD8+ T cells was increased according to the ratio of T cells to K562 and peptide concentration. Formalin-fixed K562/ A*02 showed similar antigen presenting function to live K562/ A*02. Moreover, K562/ A*02 could present antigenicpeptide to not only A*0201 restricted CD8+ T cells but also CD8+ T cells from A*0206 donor. Conclusion: These results suggest that K562/ A*02 could be generally used as target having specificity and negligible background for measuring CD8+ T cell responses and selective use of K562 with responsder matched HLA molecules on its surface as APC may circumvent the limitation of providing HLA-matched autologous target cells.

Human CD8+ T-Cell Populations That Express Natural Killer Receptors

  • June-Young Koh;Dong-Uk Kim;Bae-Hyeon Moon;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.8.1-8.13
    • /
    • 2023
  • CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.

Anti-CD137 mAb Deletes Both Donor $CD4^+$ and $CD8^+$ T Cells in Acute Graft-versus-host Disease

  • Kim, Ju-Yang;Cho, Hong-Rae;Kwon, Byung-Suk
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.428-430
    • /
    • 2011
  • We previously demonstrated that in vivo engagement of CD137, a member of TNF receptor superfamily, can delete allorective $CD4^+$ T cells through the induction of activation-induced cell death (AICD) in chronic graft-versus-host disease (cGVHD) and subsequently reverse established cGVHD. In this study, we further showed that agonistic anti-CD137 mAb was highly effective in triggering AICD of donor $CD8^+$ T cells as well as donor $CD4^+$ T cells in the $C57BL/6{\rightarrow}unirradiated$ $(C57BL/6\;{\times}\;DBA/2)F1$ acute GVHD model. Our results suggest that strong allostimulation should facilitate AICD of both alloreactive $CD4^+$ and $CD8^+$ T cells induced by CD137 stimulation. Therefore, depletion of pathogenic T cells using agonistic anti-CD137 mAb combined with potent TCR stimulation may be used to block autoimmune or inflammatory diseases mediated by T cells.

A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells

  • Haerynn Chung;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • 제21권4호
    • /
    • pp.28.1-28.14
    • /
    • 2021
  • Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.

TNF계 CD137L 및 RANKL의 파골세포와 T 세포에 대한 활성조절 (STUDY ON THE REGULATION OF OSTEOCLAST AND T CELL ACTIVATION VIA CELL MEMBRANE PROTEINS OF TNF FAMILY, CD137 LIGAND AND RANK LIGAND)

  • 홍성준;박재홍;이현우;이긍호
    • 대한소아치과학회지
    • /
    • 제35권4호
    • /
    • pp.597-606
    • /
    • 2008
  • 본 연구는 TNFR family인 CD137 및 RANK, 파골세포의 CD137L와 T 세포의 RANKL 간의 역신호에 의한 이들 세포 의 역할을 알아보고자 하였다. 이에 RANKL 및 CD137L 자극으로 유도되는 역신호 전달에 의한 T 세포 활성과 파골세포분 화에 미치는 영향을 규명하고자 웅성 생쥐의 골수세포와 T 세포를 공동배양하여 다음과 같은 결과를 얻었다. 1. 생쥐 단핵세포주 및 골수유도 단핵전구세포에서 CD137L이 발현되며, CD137L 단클론 항체로 자극을 주었을 경우 파 골세포 표지단백질인 TRAP 양성 파골세포의 형성이 억제되었다. 2. 활성화된 $CD4^+$$CD8^+$ T 세포에서 RANKL을 발현하였으며 RANKL의 유사 수용체인 OPG 재조합 단백질을 처리 하여 $CD4^+$$CD8^+$ T 세포의 세포증식이 억제되었다. 이 연구의 결과는 CD137 자극에 의한 T 세포활성 및 RANK 자극에 의한 파골세포분화 및 활성이 각각 수용체에 결합하 는 라이겐드의 역신호에 의해 억제되었는데, 이는 파골세포와 T 세포의 과도한 활성을 제어하는 생체의 항상성조절에 관여하 는 기전으로 생각된다.

  • PDF

면역기능 증강 신물질에 대한 마우스의 면역학적 및 혈액학적 변화 (Changes of immunostimulatory effects by Immu-Forte on mice)

  • 정지윤
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.501-505
    • /
    • 2005
  • Immu-Forte composed of chitosan, ${\beta}-glucan$, manno-oligosaccharide and pangamic acid was evaluated for its effectiveness as a nonspecific immunostimulator in mice. The effects of Immu-Forte were determined by analysis of cytokines using ELISA and phenotype of leukocyte subpopulations using monoclonal antibodies specific to mouse leukocyte differentiation antigens and flow cytometry. All T cells, all B cells, CD4 T cells, CD8 T cells, macrophages, IL-2, IL-4, IL-12 and IFN-r in Immu-Forte A-treated group increased in 1 months posttreatment and were significantly higher (p < 0.05) than that of control at 1 months posttreatment. All T cells, all B cells, CD4 T cells, CD8 T cells, macrophages and IL-2 in Immu-Forte EX-treated low and middle dose groups increased in 1 months posttreatment and were significantly higher (p < 0.05) than that of control at 1 months posttreatment. In the Immu-Forte soybean-treated group, NK cells and IL-4 were significantly higher in middle dose-treated group, and IL-2, IL-4 and IFN-r were significantly higher in low dose-treated group. In the Immu-Forte F-treated group, all T cells, all B cells, CD4 T cells, CD8 T cells, macrophages, NK cells, IL-2, IL-4, IL-12 and IFN-r in high dose-treated group and all T cells, all B cells, CD4 T cells, CD8 T cells, macrophages, IL-2, IL-4, IL-12 and IFN-r in middle dose-treated group and NK cells, IL-2, IL-4, IL-12 and IFN-r in low dose-treated group were significantly higher (p < 0.05) than that of control at 1 months posttreatment. In conclusion, this study has demonstrated that Immu-Forte had an immunostimulatory effect on mice through proliferation and activation of mouse immune cells.

Shaping Heterogeneity of Naive CD8+ T Cell Pools

  • Sung-Woo Lee;Gil-Woo Lee;Hee-Ok Kim;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.2.1-2.19
    • /
    • 2023
  • Immune diversification helps protect the host against a myriad of pathogens. CD8+ T cells are essential adaptive immune cells that inhibit the spread of pathogens by inducing apoptosis in infected host cells, ultimately ensuring complete elimination of infectious pathogens and suppressing disease development. Accordingly, numerous studies have been conducted to elucidate the mechanisms underlying CD8+ T cell activation, proliferation, and differentiation into effector and memory cells, and to identify various intrinsic and extrinsic factors regulating these processes. The current knowledge accumulated through these studies has led to a huge breakthrough in understanding the existence of heterogeneity in CD8+ T cell populations during immune response and the principles underlying this heterogeneity. As the heterogeneity in effector/memory phases has been extensively reviewed elsewhere, in the current review, we focus on CD8+ T cells in a "naive" state, introducing recent studies dealing with the heterogeneity of naive CD8+ T cells and discussing the factors that contribute to such heterogeneity. We also discuss how this heterogeneity contributes to establishing the immense complexity of antigen-specific CD8+ T cell response.

BCG 예방접종을 받은 개체에서 유도되어 있는 결핵균 균체항원에 특정한 CD8+T 세포의 보호 면역반응 (M. tuberculosis Somatic Antigen Specific CD8+T cell Responses in BCG-Vaccinated Subjects)

  • 조장은;조상래;이경화;박승규;조성애
    • Tuberculosis and Respiratory Diseases
    • /
    • 제59권3호
    • /
    • pp.272-278
    • /
    • 2005
  • 배 경 : 결핵의 보호면역 반응에서 CD8+T 세포에 의한 여러 기전이 중요한 역할을 한다는 사실이 최근에 보고되고 있다. $IFN-{\gamma}$ 분비 외에도 결핵균으로 감염된 세포에 독성을 나타내어 직접 결핵균으로 감염된 세포를 제거하는 독성능 또한 그 역할이 중요하다고 알려지고 있는데, BCG 예방접종을 받은 개체에서도 이러한 균체항원에 특정한 CD8+T 세포의 독성능이 유도되어 있어서 보호면역 반응에서의 역할을 하는지 연구하였다. 대상 및 방법 : HLA-A*0201 과 A*0206를 표현하며 BCG 예방접종을 한 개체들의 혈액에서 백혈구를 분리하고 균체항원의 항원결정기 ($ThyA_{30-38}$) 에 대한 독성능과 ex vivo $IFN-{\gamma}$ 분비능을 유도하였다. 결 과 : 이들 대상에게서 $IFN-{\gamma}$ 분비능과 독성능이 유도되는 것을 관찰할 수 있었고, 또한 HLA-A*0201에 결합하여 CD8+T 세포의 면역 반응을 일으키는 $ThyA_{30-38}$ 펩티드들은 HLA-A*0206인 개체에서도 면역반응을 일으키는 것을 관찰할 수 있었다. 결 론 : 균체 항원에 특정한 CD8+T 세포들의 $IFN-{\gamma}$ 분비 능과 독성능이 BCG 백신주사를 맞은 개체에서 유도되어 있는 것을 관찰할 수 있었다. 따라서 이러한 균체항원에 특정한 CD8+T 세포들이 보호면역 반응에 관여한다는 것을 제시하며, 또한 HLA-A*0201 개체들과 HLA-A*0206 개체들을 대상으로 하는 백신이나 치료제로써 $ThyA_{30-38}$ 펩티드의 사용 가능성을 제시한다.

CD5 Expression Dynamically Changes During the Differentiation of Human CD8+ T Cells Predicting Clinical Response to Immunotherapy

  • Young Ju Kim;Kyung Na Rho;Saei Jeong;Gil-Woo Lee;Hee-Ok Kim;Hyun-Ju Cho;Woo Kyun Bae;In-Jae Oh;Sung-Woo Lee;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.35.1-35.16
    • /
    • 2023
  • Defining the molecular dynamics associated with T cell differentiation enhances our understanding of T cell biology and opens up new possibilities for clinical implications. In this study, we investigated the dynamics of CD5 expression in CD8+ T cell differentiation and explored its potential clinical uses. Using PBMCs from 29 healthy donors, we observed a stepwise decrease in CD5 expression as CD8+ T cells progressed through the differentiation stages. Interestingly, we found that CD5 expression was initially upregulated in response to T cell receptor stimulation, but diminished as the cells underwent proliferation, potentially explaining the differentiation-associated CD5 downregulation. Based on the proliferation-dependent downregulation of CD5, we hypothesized that relative CD5 expression could serve as a marker to distinguish the heterogeneous CD8+ T cell population based on their proliferation history. In support of this, we demonstrated that effector memory CD8+ T cells with higher CD5 expression exhibited phenotypic and functional characteristics resembling less differentiated cells compared to those with lower CD5 expression. Furthermore, in the retrospective analysis of PBMCs from 30 non-small cell lung cancer patients, we found that patients with higher CD5 expression in effector memory T cells displayed CD8+ T cells with a phenotype closer to the less differentiated cells, leading to favorable clinical outcomes in response to immune checkpoint inhibitor (ICI) therapy. These findings highlight the dynamics of CD5 expression as an indicator of CD8+ T cell differentiation status, and have implications for the development of predictive biomarker for ICI therapy.