• Title/Summary/Keyword: CD-Pickup

Search Result 24, Processing Time 0.022 seconds

Measurement of a Shape of Glass Using the Hologram Optical System

  • Lee, Young-Chon;Youn, Sang-Pil;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.2-53
    • /
    • 2001
  • The Non-Contact Optical Sensor using the Hologram Laser for CD Pickup was developed to measure a shape of transparent objects and shown a good performance. Therefore the problems caused by the contact sensor are solved by using the Non-Contact Sensor. The Non-Contact Sensor has to move toward the objects and obtain the Focus Error Signal to measure a position of transparent objects. However, if the distance between the sensor and the object is shorter than the working distance of the objective lens, the sensor will be collided against the objects. In this paper we proposed a new algorithm to estimate the start position of the Focus Error Signal to solve the problems of collision between the sensor and the objects. In addition, we verified that the algorithm is free from the collision in the real time measurement.

  • PDF

Development of a Shape Inspection System of the Light Guide Panel

  • Youn, Sang-Pil;Lee, Young-Chon;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.3-53
    • /
    • 2001
  • This paper deals with the development of a shape inspection system of the Light Guide Panel(LGP), and the study for the performance of the system. The conventional contact sensing methods have been used to inspect the shape. However the contact-sensing methods have some problems. The contact between a tip of the sensor and the surface of objects make a sensor tip abraded and generate a defect on the surface of objects. In this paper, we employed the Non-Contact Optical Sensor[1] to measure the shape inspection system of LGPs, The Sensor composed of Hologram laser[3] unit used for CD Optical Pickup[2] is low cost and has a good performance to measure a transparent objects. From the results of experiments for LGP shape inspection ...

  • PDF

Design of Diffractive Optical Element for Improving Jitter Characteristics of Optical Pickup (광 픽업 장치에서의 지-터 특성개선을 위한 회절 광학소자의 설계)

  • Lee Gun-Ki;Jung Won-Geun;Lee Ju-Won;Kim Young-Il;Jun Jae-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1810-1817
    • /
    • 2004
  • A diffractive optical element(DOE) for an optical pickup system is proposed in this thesis. Optimization algorithms are used to synthesise the DOE to meet a detailed specification of the two kind of cost function. The one isso called as apodization which refers to the process of suppressing the secondary maxima and the other is so called as sharpness which refers to the process of reducing the size of primary maxima. The result obtained by simplex optimization method is that the apodization and sharpness are well achieved separately. In apodization, the secondary maxima is reduced up to 39%. And in sharpness, the size of first maxima is reduced to 95.2%.

A Noncontact Optical Sensor Development for Measuring the Thickness of Transparent Plates (투명판의 두께 측정용 비접촉식 광센서 개발)

  • Ryu, Young-Kee;Oh, Choonsuk;Lee, Seoyoung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.1-6
    • /
    • 2006
  • The noncontact optical sensor using the hologram laser and automatic power controller is developed to measure a thickness of transparent objects and achieve excellent performance. Due to the contact between the tip of the sensor and the surface of objects, the tip is abraded. In addition the casting glass under high temperature results in extending the size of sensor body. The accuracy of the sensor is degraded due to these reasons. In this paper, to overcome these problems, we proposed a low cost non-contact optical sensor that is composed of a hologram laser unit used for optical pickup of CD player and a plastic lens. Therefore the problems caused by the contact sensor are solved by using the noncontact sensor. The noncontact sensor has to move toward the objects and obtain the focus error signal to measure a position of transparent objects. While the internal temperature of the sensor is controlled under ${\pm}0.1^{\circ}$, many trials shows ${\pm}2{\mu}m$ measurement error as excellent performance.