• Title/Summary/Keyword: CD conversion yield

Search Result 19, Processing Time 0.023 seconds

Effect of Water-Activity Depressor on the Enzymatic Synthesis of Maltosyl-$\beta$-Cyclodextrin through the Reverse Reaction of Pullulanase (Water-Activity Depressor가 Pullulanase의 역반응에 의한 Maltosyl-$\beta$-Cyclodextrin의 합성에 미치는 영향)

  • 이용현;한일근
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.422-429
    • /
    • 1992
  • The effect of various water-activity depressors, such as pol yo Is, sugars, and polymers, on the conversion yields of the enzymatic synthesis of maltosyl-$\beta$-cyclodextrin from $\beta$-cyc1odextrin and maltose through reverse reaction of pullulanase was investigated. PEG 6000 of concentration of 10% (w/w) was found to be the most acceptable water-activity depressor resulting for increment of conversion yield from 43.0% to 55.9%, corresponding maltosyl-$\beta$-cyc1odextrin concentration of 3.02 g/100 ml H20. Water activity was changed from initial 0.966 to 0.914 upon addition of 20% (w/w) of PEG 6000. The conversion yields were inversely proportional to the water activities, and the increased conversion yield was caused by water activity depression which inhibited the hydrolysis reaction of maltosyl-$\beta$-CD to maltose and $\beta$-cyc1odextrin. The changes of enthalpy ($\Delta$H), entropy ($\Delta$S), and Gibbs free energy ($\Delta$G) were calculated to be 36.788 kJ/mole, 0.067 kJ/mole K. and 14.433 kJ/mole, respectively. The synthesis of maltosyl-$\beta$-CD could be increased substantially by the intermittent feeding of $\beta$-cyclodextrin. PEG 6000 could be separated effectively from reaction mixture using ultrafiltration membrane for reutilization.

  • PDF

Production of Cyclodextrin by Bacillus sp. I-5 Cyclodextrin Glucanotransferase (Bacillus sp. I-5 Cyclodextrin Glucanotransferase에 의한 Cyclodextrin의 영향)

  • Kim, Soeng-Hyuck;Choi, Jong-Soo;Chung, Kap-Taek;Yoo, Young-Soo;Jung, Dong-Sun;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.6-11
    • /
    • 1994
  • A cyclodextrin glucanotransferase(CGTase)-producing Bacillus sp. I-5 was isolated from soil and the enzyme exhibited the maximum reaction rate at pH 8.0 and $50^{\circ}C$. It was found that CGTase of I-5 produced ${\beta}-$ and ${\gamma}-CD$ mainly but the production ratio of cyclodextrins (CDs) was influenced by the buffer solution. Sodium acetate significantly stimulated the formation of ${\gamma}-CD$, increasing the content by 35%. The production of CDs was influenced by DE value of starch. The results indicated that DE value in the range of $3.5{\sim}6.0$ were most effective for the CD formation. CGTase was immobilized on the reversibly soluble-insoluble carrier, hydroxypropyl mothylcellulose acetate succinate. The immobilized CGTase was soluble at pH 7.5, and precipitated easily at pH 6.0. Enzyme reactor was designed to produce CD continuously. It was composed of three major stages-CD produttion by immobilized CGTase, conversion of the residual dextrin to glucose by amylase and glucoamylase and alcohol fermentation by yeasts to remove the glucose into alcohol. The yield of total CDs was 3.65g from 10g soluble starch.

  • PDF

Higher concentrations of folic acid reduced the dietary requirements of supplemental methionine for commercial broilers

  • S. V. Rama Rao;M. V. L. N. Raju;D. Nagalakshmi;T. Srilatha;S. S. Paul;B. Prakash;A. Kannan
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.875-882
    • /
    • 2024
  • Objective: An experiment was conducted to study the effect of supplementing DL methionine (DL Met) at graded concentrations on performance, carcass variables, immune responses and antioxidant variables in broiler chicken fed folic acid (FA) fortified (4 mg/kg) low-methionine diet. Methods: A basal diet (BD) without supplemental DL Met, but with higher level (4 mg/kg) of FA and a control diet (CD) with the recommended concentration of methionine (Met) were prepared. The BD was supplemented with DL Met at graded concentrations (0%, 10%, 20%, 30%, 40%, and 50% supplemental DL Met of CD). Each diet was fed ad libitum to 10 replicates of 5 broiler male chicks in each from 1 to 42 d of age. Results: Body weight gain (BWG) reduced, and feed conversion ratio (FCR) increased in broilers fed low-Met BD. At 30% and 20% inclusion of DL met, the BWG and FCR, respectively were similar to those fed the CD. Similarly, supplementation of 10% DL Met to the BD significantly increased ready to cook meat yield and breast meat weight, which were similar to those of the CD fed broilers. Lipid peroxidation reduced, the activity of antioxidant enzymes (GSHPx and GSHRx) in serum increased and lymphocyte proliferation increased with increased supplemental DL Met level in the BD. The concentrations of total protein and albumin in serum increased with DL Met supplementation to the BD. Conclusion: Based on the data, it can be concluded that supplemental Met can be reduced to less than 50% in broiler chicken diets (4.40, 3.94, and 3.39 g/kg, respectively in pre-starter, starter and finisher phases) containing 4 mg/kg FA.

Studies of vindoline metabolism in Catharanthus roseus cell cultures using deuterium-labeled tabersonine (Catharanthus roseus 세포 배양액에 deuterium이 치환된 tabersonine을 사용한 vindoline 생합성 경로 연구)

  • Lee, Soo;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2012
  • Vinca alkaloids produced from Catharanthus roseus are one of the most important natural product drugs in treatments of human cancers. These anticancer drugs are derived from coupling of the two monomeric indole alkaloids, catharanthine and vindoline. In order to investigate vindoline biosynthesis, tabersonine-$CD_3$ 1a is synthesized to use as a deuterium labeled precursor, which is distinguished clearly from the natural counterpart. We show that these deuterium labeled tabersonine 1a are successfully incorporated into the vindoline biosynthetic pathway to yield three deuterated vindoline intermediates. 16-Hydroxytabersonine-$CD_3$ (m/z 356) 2a, 16-Methoxytabersonine-$CD_3$ (m/z 370) 3a, 16-Methoxy-2,3-dihydro-3-hydroxytabersonine-$CD_3$ (m/z 388) 4a are produced from the cell suspension culture measured by UPLC/MS at 5 and 13 days after feeding tabersonine. The conversion rates from 1a to 2a and 2a to 3a are fast, whereas that from 3a to 4a is much slower. This indicates that the rate determining step among the first three vindoline biosynthesis is the last step. As a result of the slow conversion rate from 3a to 4a, the accumulation level of 16-Methoxytabersonine-$CD_3$ 3a is significantly increased up to 13 days. The accumulation ratio among 2a, 3a and 4a is 1, 2 and 0.1 at 5 days. However, the peaks of desacetoxyvindoline-$CD_3$ 5a, deacetylvindoline-$CD_3$ 6a and vindoline-$CD_3$ 7a are not found from the cell extracts even after 13 days of incubation which may indicate no presence of their corresponding enzymes.

Purification and Characterization of $\beta$-Cyclodextrin Glucanotransferase Excreted by Bacillus firmus var. aikalophilus. (호알칼리성 Bacillus firmus가 생산하는 $\beta$-Cyclodextrin Glucanotransferase의 정제 및 효소반응 특성)

  • Shin, Hyun-Dong;Kim, Chan;Lee, Yong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.323-330
    • /
    • 1998
  • Cyclodextrin glucanotransferase (CGTase) was purified from the culture broth of the Bacillus firmus var. alkalophilus, using ultrafiltration, starch adsorption/desorption, ion-exchange chromatography on DEAE-cellulose and gel filtration on Sephacryl HR-100. The molecular weight of the purified enzyme was determined as 77,000 by SDS-PAGE. The optimum pH and temperature for the CD synthesis were 6.0 and 5$0^{\circ}C$, respectively. The activity of this enzyme was stably kept at the range of pH 6.0~9.5 and up to 5$0^{\circ}C$. However, in the presence of $Ca^{2+}$, the optimum temperature for CD synthesis was shifted 55~6$0^{\circ}C$ and this enzyme was stable up to 6$0^{\circ}C$ because of the stabilizing effect of $Ca^{2+}$. The purified CGTase produced CDs with high conversion yields of 45~51% from sweet potato starch, com starch and amylopectin as substrate, especially, and the product ratio of $\beta$-CD to ${\gamma}$-CD was obtained at range of from 5.8:1 to 8.4:1 according to the kind of substrate. The purified enzyme produced mainly $\beta$-CD without accumulation of $\alpha$-CD during enzyme reaction using various starches as the substrate, indicating that the purified enzyme is the typical $\beta$-CGTase. The purified CGTase produced 25 g/l of CDs from 5.0% (w/v) liquefied com starch and the conversion yield of CDs was 50%, and the content of $\beta$-CD was 84% of total CDs after 8 hours under the optimum reaction condition.ion.

  • PDF

Transfer of Arsenic and Heavy Metals from Soils to Rice Plant under Different Drainage Conditions (논토양 배수조건에 따른 비소 및 중금속의 용출 및 벼 전이특성)

  • Koh, Il-Ha;Kim, Jungeun;Kim, Gi Suk;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.12-21
    • /
    • 2017
  • A pot experiment was conducted to investigate the transfer of As and cationic heavy metals (Fe, Mn, Zn, Cd and Pb) from soil to rice plant in soil condition with submerged and drained. During the ninety-day monitoring period for soil solution, solubility of reducible elements such as As, Fe and Mn in submerged condition were higher than that of Zn. On the contrary, concentration of Zn in drained condition was higher than that of reducible elements. The concentration of As, Cd, Pb and Zn in rice plant (root, stem, leaf and grain) showed similar pattern with soil solution. The As concentration in each part of rice plant, which cultivated in drained condition, measured 56%~94% lower than those in submerged condition. However, the contents of cationic heavy metals (Cd, Pb and Zn) were represented the opposite result with As. These results are due to mobility of As and cationic heavy metals under different soil drainage conditions which represent oxidation and reduction. Thus soil drainage control can be used as acceptable passive treatment methods to reduce transfer of inorganic contaminants from soil to rice plant. However more detailed examination on soil condition conversion is needed, because yield of rice was decreased when it cultivated in drained condition only. It also needed when soil is contaminated by As and cationic heavy metal because single drainage condition cannot reduce transfer of both kinds of contaminants all.

Ion Effect on Steroid Bioconversion in Rhizopus nigricans (Rhizopus nigricans의 Steroid 전환 반응에 대한 이온의 변화)

  • Lee, Jung-Jin;Kim, Mal-Nam
    • The Korean Journal of Mycology
    • /
    • v.21 no.1
    • /
    • pp.23-27
    • /
    • 1993
  • Ion effects on $11{\alpha}-hydroxylation$ of progesterone and $5{\alpha}-reduction\;of\;11{\alpha}-hydroxyprogesterone$ by Rhizopus nigricans were investigated. Metal ions such as $Cu^{2+},\;Cd^{2+},\;Co^{2+},\;Mn^{2+},\;Zn^{2+},\;Fe^{2+},\;Mg^{2+},\;Fe^{3+}\;and\;Na^+$ reduced the $11{\alpha}-hydroxylation$ activity, while $K^+$ stimulated the same reaction. Enzyme activity for the $5{\alpha}-reduction$ of $11{\alpha}-hydroxyprogesterone$ was increased in the presence of $Fe^{2+},\;Mn^{2+},\;Mg^{2+},\;Co^{2+},\;Zn^{2+},\;Fe^{3+},\;K^+\;and\;Na^+$, whereas it was decreased in the presence of $Cd^{2+}\;and\;Cu^{2+}$. Potassium ion of $10^{-3}\;M\;$ of concentration was found to be effective for the promotion of $11{\alpha}-hydroxylation$. On the other hand, cadmium ion of $10^{-4}\;M$ was proved to suppress the $5{\alpha}-reduction$ reaction. Progesterone is reported to be transformed into $11{\alpha}-hydroxyprogesterone$ which, in turn, is converted further into $11{\alpha}-hydroxy-allopregnane-3$, 20-dione by R. nigricans. From this point of view, the highest yield of $11{\alpha}-hydroxyprogesterone$ could be obtained when potassium ion of $10^{-3}\;M$ was given initially followed by addition of cadmium ion of $10^{-4}\;M$ to limit conversion of 11{\alpha}-hydroxyprogesterone into $11{\alpha}-hydroxy-allopregnane-\;3$, 20-dione.

  • PDF

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF