• 제목/요약/키워드: CCNBD

검색결과 3건 처리시간 0.018초

인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구 (Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens)

  • 장수호;이정인
    • 터널과지하공간
    • /
    • 제9권4호
    • /
    • pp.315-327
    • /
    • 1999
  • 최근들어 발파, 수압파쇄, 암반사면 등의 암반공학적 문제에 있어서 암석파괴역학이 널리 적용되고 있다. 그러나 암석 고유의 특성으로서 파괴역학에서 가장 중요한 변수인 암석의 파괴인성 측정에 관한 방법은 아직 확립되지 못한 실정이다. 본 연구에서는 기존 파괴인성 측정법과 비교하여 많은 장점을 가지고 있는 CCNBD, SCB, CNSCB 및 BDT등과 같은 디스크 형태의 시험편을 사용하여 Mode I 파괴인성을 측정하였다. 또한 CCNBD 시험편에 STCA법을 적용하여 혼합모드 및 Mode II 파괴인성을 측정하였다. 각시험에서 시험편의 두께, 지름 및 노치길이 등과 같은 치수효과가 파괴인성에 끼치는 영향을 조사하였다. 혼합모드 시험결과로부터 여러 회귀곡선을 적용하여 파괴포락선을 구하였고 시험결과를 혼합모드에서의 세 가지 파괴기준식과 비교하였다. 각 파괴인성 시험 시에 균열전파가 시작되는 하중수준을 정확히 파악하고 균열의 변형거동을 조사하기 위해 미소파괴음 측정을 병행하였다.

  • PDF

저온하에서의 온도 및 함수 조건에 따른 암석의 모드 I 파괴인성 측정 (Measurement of Mode I Fracture Toughness of Rocks with Temperature and Moisture Conditions at Low Temperature)

  • 정용복;박찬;신중호;이희근
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.352-361
    • /
    • 2001
  • 저온 냉각상태 및 냉각 후 상온 해빙 상태에서 암석의 모드 I 파괴인성을 BDT와 CCNBD시험편을 사용하여 구하였다. 실험 온도 범위는 상온($25^{\circ}C$)에서 -16$0^{\circ}C$로 설정하였으며 건조 및 포화된 화강암과 사암을 사용하여 파괴인성에 대한 공극수와 공극률의 영향 정도를 조사하고자 하였다. 또한 냉각 과정에서 발생할 수 있는 열균열을 조사하기 위해서 SEM 이미지 분석도 실시하였다. 냉각된 암석의 파괴인성은 온도가 하강함에 따라 증가하였다. 이러한 증가경향은 포화시료에서 더 크게 나타났으며, 포화 시료의 경우 화강암의 증가율이 사암에 비해 크게 나타났다. 냉각 후 상온 해빙 상태에서 구한 파괴인성의 경우, 냉각을 거 치지 않은 상온 상태의 파괴인성 값의 15% 이내에서 결정되었다. 냉각-해빙을 거친 시료에 대한 SEM 분석결과 화강암의 경우 조암광물간의 열팽창 차이에 의한 열균열을 확인할 수 있었으며 냉각온도가 낮을수록 균열밀도가 증가하였다.

  • PDF

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).