• Title/Summary/Keyword: CCL2/CCR2

Search Result 17, Processing Time 0.029 seconds

The Role of the Peripheral Chemokine, CCL3, in Hyperalgesia following Peripheral Nerve Injury in the Rat (신경손상에 의해 유발된 과민통반응에서 말초 케모카인 CCL3의 역할)

  • Leem, Joong Woo;Lee, Hyun Joo;Nam, Taick Sang;Yoon, Duck Mi
    • The Korean Journal of Pain
    • /
    • v.21 no.3
    • /
    • pp.187-196
    • /
    • 2008
  • Background: Upregulation of one type of the pro-inflammatory chemokine (CCL2) and its receptor (CCR2) following peripheral nerve injury contributes to the induction of neuropathic pain. Here, we examined whether another type of chemokine (CCL3) is involved in neuropathic pain. Methods: We measured changes in mechanical and thermal sensitivity in the hind paws of naïve rats or rats with an L5 spinal nerve ligation (SNL) after intra-plantar injection of CCL3 or met-RANTES, an antagonist of the CCL3 receptor, CCR1. We also measured CCL3 levels in the sciatic nerve and the hind paw skin as well as CCR1 expression in dorsal root ganglion (DRG) cells from the lumbar spinal segments. Results: Intra-plantar injection of CCL3 into the hind paw of naive rats mimicked L5 SNL-produced hyperalgesia. Intra-plantar injection of met-RANTES into the hind paw of rats with L5 SNL attenuated hyperalgesia. L5 SNL increased CCL3 levels in the sciatic nerve and the hind paw skin on the affected side. The number of CCR1-positive DRG cells in the lumbar segments was not changed following L5 SNL. Conclusions: Partial peripheral nerve injury increases local CCL3 levels along the degenerating axons during Wallerian degeneration. This CCL3 binds to its receptor, CCR1, located on adjacent uninjured afferents, presumably nociceptors, to induce hyperalgesia in the neuropathic pain state.

Development of Neuropathic Pain Behavior and Expression of CCL2/CCR2 and CX3CL1/CX3CR1 after Spinal Cord Hemisection

  • Park, Hea-Woon;Son, Jo-Young;Cho, Yun-Woo;Hwang, Se-Jin;Kim, Su-Jeong;Ahn, Sang-Ho;Jang, Sung-Ho;Jung, Yong-Jae
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.3
    • /
    • pp.99-105
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the development of pain behavior and the expression of CCL2/CCR2 and CX3CL1/CX3CR1 at above and below the level of hemisection of the spinal cord in a rat model. Methods: Spinal cords of adult female Sprague-Dawley rats (n= 16, 200~250 g, 6~8 weeks old) were hemisected at T13 on the right side to develop the spinal hemisection injury model. We compared behavioral responses of the hemisection and of a sham surgery group. Behavioral tests for motor function (by the BBB locomotor scale), and for pain response for mechanical and cold allodynia were assessed postoperatively (PO) for 21 days. Expression of mRNA for chemokines and their receptors (CCL2/CCR2 and CX3CL1/CX3CR1) below and above the level of the spinal cord dissection were examined by RT-PCR. Results: We observed gradual motor improvement and the development of mechanical and cold allodynia on the ipsilateral hindpaw after spinal hemisection injury. We also found upregulation of mRNA expression of CCL2/CCR2 both above and below the level of spinal cord dissection but CX3CL1/CX3CR1 mRNA expression. Conclusion: Upregulation of CCL2/CCR2 is associated with neuropathic pain after spinal hemisection injury. CCL2/CCR2 may play an important role in the development of neuropathic pain after SCI as well as of peripheral neuropathic pain. These findings may improve understanding of the pathophysiological mechanism of neuropathic pain after SCI.

Chemotactic Effect of Leukotactin-1/CCL15 on Human Neutrophils

  • Lee Ji-Sook;Yang Eun-Ju;Ryang Yong-Suk;Kim In-Sik
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.145-151
    • /
    • 2006
  • Leukotactin-l (Lkn-l )/CCL15 has been known as a potent chemoattractant of leukocytes. However, the precise function of Lkn-l in human neutrophils has not been explained well. In the present study, we investigated the contribution of Lkn-1 in chemotactic activity of human neutrophils. Both CCR1 and CCR3 mRNA expressions are strongly expressed in human neutrophils but CCR2 protein expression was uniquely detected on the cell surface. Lkn-l binding to CCR1 and CCR3 induced chemotactic activity of neutrophils. Chemotactic index of Lkn-l was comparable to that of IL-8. $MIP-1{\alpha}/CCL3$ binding to CCR1 and CCR5 has no effect on neutrophil migration. Cell migration, in response to Lkn-l, was blocked by pertussis toxin (Ptx), a $G_o/G_i$ protein inhibitor, and U73122, a phospholipase C(PLC) inhibitor but not by protein kinase C inhibitor such as rottlerin, and Ro-31-8425. Taken together, our results demonstrate that Lkn-l transduces the chemotaxis signal through $G_o/G_i$ protein and PLC. This finding provides the molecular mechanism by which Lkn-l may contribute to neutrophil movement into the site of inflammation.

  • PDF

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.

Restoration of the inflammatory gene expression by horse oil in DNCB-treated mice skin

  • Lee, Jae-Chul;Park, Ga-Ryoung;Choi, Byoung-Soo;Lee, Youngjae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.15.1-15.11
    • /
    • 2020
  • The present study evaluated the anti-inflammatory effect of horse oil in 2, 4-dinitrochlorobenzene (DNCB)-treated BALB/c mice. After the application of DNCB, the mice showed atopic dermatitis symptoms, including severe erythema, hemorrhage, and erosion, whereas those symptoms were alleviated by treatment with horse oil. To explain the anti-dermatitis effect of horse oil, the gene expression levels in the healing process in dorsal skin were observed using a cDNA microarray. The cDNA microarray analysis revealed that the expression levels of 30 genes related to the inflammation, including Ccr1, Ccr2, Ccl20, Anxa1, and Hc genes, were up-regulated (higher than 2.0-fold) in the DNCB group compared to the levels in the control group, whereas the levels were restored to the control level in the DNCB + horse oil-treated group. In contrast, the gene expression levels of 28 genes related to inflammation, including chemokine genes Ccl5, Ccl7, Ccl8, Cxcl10, and Cxcl13 genes, were down-regulated (lower than 0.5-fold) in the DNCB group compared to the levels in the control group, whereas the levels were restored to the control level in the DNCB + horse oil-treated group. Overall, the results show that horse oil restores the expression levels of genes related to inflammation that were perturbed by DNCB treatment.

Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

  • Lee, Young-Sun;Yi, Hyon-Seung;Suh, Yang-Gun;Byun, Jin-Seok;Eun, Hyuk Soo;Kim, So Yeon;Seo, Wonhyo;Jeong, Jong-Min;Choi, Won-Mook;Kim, Myung-Ho;Kim, Ji Hoon;Park, Keun-Gyu;Jeong, Won-Il
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.998-1006
    • /
    • 2015
  • Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knockout ($Raldh1^{-/-}$), $CCL2^{-/-}$ and $CCR2^{-/-}$ mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-${\gamma}$ in T cells. Moreover, interferon-${\gamma}$ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis.

Glucocorticoids Impair the 7α-Hydroxycholesterol-Enhanced Innate Immune Response

  • Yonghae Son;Bo-Young Kim;Miran Kim;Jaesung Kim;Ryuk Jun Kwon;Koanhoi Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.5
    • /
    • pp.40.1-40.14
    • /
    • 2023
  • Glucocorticoids suppress the vascular inflammation that occurs under hypercholesterolemia, as demonstrated in an animal model fed a high-cholesterol diet. However, the molecular mechanisms underlying these beneficial effects remain poorly understood. Because cholesterol is oxidized to form cholesterol oxides (oxysterols) that are capable of inducing inflammation, we investigated whether glucocorticoids affect the immune responses evoked by 7α-hydroxycholesterol (7αOHChol). The treatment of human THP-1 monocytic cells with dexamethasone (Dex) and prednisolone (Pdn) downregulated the expression of pattern recognition receptors (PRRs), such as TLR6 and CD14, and diminished 7αOHChol-enhanced response to FSL-1, a TLR2/6 ligand, and lipopolysaccharide, which interacts with CD14 to initiate immune responses, as determined by the reduced secretion of IL-23 and CCL2, respectively. Glucocorticoids weakened the 7αOHChol-induced production of CCL2 and CCR5 ligands, which was accompanied by decreased migration of monocytic cells and CCR5-expressing Jurkat T cells. Treatment with Dex or Pdn also reduced the phosphorylation of the Akt-1 Src, ERK1/2, and p65 subunits. These results indicate that both Dex and Pdn impair the expression of PRRs and their downstream products, chemokine production, and phosphorylation of signaling molecules. Collectively, glucocorticoids suppress the innate immune response and activation of monocytic cells to an inflammatory phenotype enhanced or induced by 7αOHChol, which may contribute to the anti-inflammatory effects in hypercholesterolemic conditions.

  • PDF

Gagam-Gongjin-dan Extract Attenuates Immune Responses to Ovalbumin in Balb/c Mice (Balb/c 마우스에서 Ovalbumin 면역반응에 대한 가감공진단(加減拱辰丹) 추출물의 억제효과)

  • Kim, Hong-Jun;Hwang, Sung-Yeoun;Mok, Ji-Ye;Hwang, Byung-Soon;Jeong, Seung-Il;Jang, Seon-Il
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.127-135
    • /
    • 2009
  • Objectives : Gagam-Gongjin-dan (GGD) composited with Cervi parvum Cornu, Corni Fructus, Angelica gigantis Radix, Lycii Fructus, Dioscoreae Rhizoma, Citri Pericarpium, Gastrodiae Rihzoma, Agastachis Herba, Cassiae cortkex, Scutellariae Radix, Schisandrae Fructus has been traditionally used for chronic diseases or weakness after illness in oriental countries. However, little is known about the effects of methanol extract of GGD on immune responses to ovalbumin (OVA) plus alum. Therefore, the purpose of this study was to investigate the effects of GGD on immune responses to ovalbumin plus alum in Balb/c mice. Methods : In this study, the extract of GGD was prepared by extracting with methanol for 7 days. The extract was freeze-dried following filtration through vacuum distillation system. Mice were orally administrated with or without GGD extract of different doses (50-200 mg/kg/day) for 30 days. We examined the effects of GGD extract on the serum levels of total IgE, OVA-specific IgE, IgG1, IgG2a, and CTACK/CCL27 production and CCR10 expression in lymph node cells and body weight change and foot pad swelling responses in ovalbumin treated Balb/c. Results : The oral administration of GGD dose-dependently reduced the serum levels of total IgE, OVA-specific immunoglobulin (IgE, IgG1 and IgG2b) and CTACK/CCL27 production in ovalbumin treated BALB/c mice. The levels of CCR10 expression from lymph node cells of OVA treated mice were markedly suppressed by treatment with GGD in a concentration dependent manner. Furthermore, foot pad swelling responses were also markedly suppressed by GGD. However, body weight were significantly increased dose dependently by GGD treatment. Conclusions : These results suggest that GGD treatment suppresses immune responses to ovalbumin, and these properties may contribute to allergic disease care.

Wogonin inhibits Cytokine-induced TARC/CCL17 Expression by Suppression of NF-${\kappa}B$ activation via p38 MAP kinase Signalning Pathways in HaCaT Keratinocytes

  • Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.1017-1024
    • /
    • 2007
  • Thymus and activation-regulated chemokine (TARC/CCL-17), produced by keratinocytes, is a CC chemokine known to selectively Th2 type T cells via $CCR4^+$ and is implicated in the development of atopic dermatitis (AD). TARC/CCL17 expression was induced by cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$). We recently found that the wogonin, a flavone isolated from Scutellaria baicalensis, suppressed TARC expression via heme oxygenase 1 (HO1) in human keratinocytes induced with mite antigen. However, little is known about the inhibitory mechanism of wogonin on TARC/CCL-17 expression stimulated with cytokines. To investigate the inhibitory mechanism, I determined the inhibitory effects of wogonin on the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and $I{\kappa}B{\alpha}$ phosphorylation, and also examined the activation of p38 MAP kainase in HaCaT keratinocytes stimulated with TNF-${\alpha}$ and IFN-${\gamma}$. Wogonin inhibited NF-${\kappa}B$-DNA complex, NF-${\kappa}B$ binding activity, and the phosphorylation of $I{\kappa}B{\alpha}$ in a dose dependent manner. Wogonin also inhibited the translocation of NF-${\kappa}B$ from cytosol to nucleus. Moreover, the phosphorylation of of p38 MAP kinase in the TNF-${\alpha}$ and IFN-${\gamma}$-stimulated HaCaT keratinocytes were suppressed by wogonin in a dose dependent manner. These results suggest that wogonin may inhibit cytokine-induced NF-${\kappa}B$ activation by $I{\kappa}B{\alpha}$ degradation via suppression of p38 MAP kinase signaling pathway in keratinocytes and modulation of wogonin signaling pathway may be beneficial for the treatment of AD.

Gene Expression Profiles in Genetically Different Mice Infected with $Toxoplasma$ $gondii$: ALDH1A2, BEX2, EGR2, CCL3 and PLAU

  • Ismail, Hassan Ahmed Hassan Ahmed;Quan, Juan-Hua;Wei, Zhou;Choi, In-Wook;Cha, Guang-Ho;Shin, Dae-Whan;Lee, Young-Ha;Song, Chang-June
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • $Toxoplasma$ $gondii$ can modulate host cell gene expression; however, determining gene expression levels in intermediate hosts after $T.$ $gondii$ infection is not known much. We selected 5 genes ($ALDH1A2$, $BEX2$, $CCL3$, $EGR2$ and $PLAU$) and compared the mRNA expression levels in the spleen, liver, lung and small intestine of genetically different mice infected with $T.$ $gondii$. ALDH1A2 mRNA expressions of both mouse strains were markedly increased at day 1-4 postinfection (PI) and then decreased, and its expressions in the spleen and lung were significantly higher in C57BL/6 mice than those of BALB/c mice. BEX2 and CCR3 mRNA expressions of both mouse strains were significantly increased from day 7 PI and peaked at day 15-30 PI ($P$<0.05), especially high in the spleen liver or small intestine of C57BL/6 mice. EGR2 and PLAU mRNA expressions of both mouse strains were significantly increased after infection, especially high in the spleen and liver. However, their expression patterns were varied depending on the tissue and mouse strain. Taken together, $T.$ $gondii$-susceptible C57BL/6 mice expressed higher levels of these 5 genes than did $T.$ $gondii$-resistant BALB/c mice, particularly in the spleen and liver. And ALDH1A2 and PLAU expressions were increased acutely, whereas BEX2, CCL3 and EGR2 expressions were increased lately. Thus, these demonstrate that host genetic factors exert a strong impact on the expression of these 5 genes and their expression patterns were varied depending on the gene or tissue.