• 제목/요약/키워드: CCD-RSM

검색결과 117건 처리시간 0.031초

Comparison of response surface methods for the optimization of an upflow anaerobic sludge blanket for the treatment of slaughterhouse wastewater

  • Chollom, Martha Noro;Rathilal, Sudesh;Swalaha, Feroz Mohammed;Bakare, Babatunde Femi;Tetteh, Emmanuel Kweinor
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.114-122
    • /
    • 2020
  • This study was aimed at using the Central Composite Design (CCD) and Box-Behnken Design (BBD) to compare the efficiency and to elucidate the main interacting parameters in the upflow anaerobic sludge blanket (UASB) reactor, namely: Organic Loading Rate (OLR), Hydraulic Retention Times (HRT) and pH at a constant temperature of 35℃. Optimum HRT (15 h), OLR (3.5 kg.m-3.d-1) and pH (7) resulted in biogas production of 5,800 mL/d and COD removal of 80.8%. BBD produced a higher desirability efficiency of 94% as compared to the CCD which was 92%. The regression quadratic models developed with high R2 values of 0.961 and 0.978 for both CCD and BBD, respectively, demonstrated that the interaction models could be used to pilot the design space. BBD model developed was more reliable with a higher prediction of biogas production (5,955.4 ± 225.3 mL/d) and COD removal (81.5 ± 1.014%), much close to the experimental results at a 95% confidence level. CCD model predictions was greater in terms of COD removal (82.6 ± 1.06% > 80.8%) and biogas production (4,636.31 mL/d ± 439.81 < 5,800 mL/d) which was less than the experimental results. Therefore, RSM can be adapted for optimizing various wastewater treatment processes.

가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계 (RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives)

  • 도정윤;국성오;김두기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권6호
    • /
    • pp.113-125
    • /
    • 2017
  • 본 연구는 전산실험을 통해 중규모 건물에 설치한 수동형 TMD의 매개변수에 대한 가중 다목적 최적화 설계를 다루고 있다. MATLAB으로 수치 시뮬레이션 코드를 작성함으로써 지진하중에 대한 동적응답을 파악하였으며 중심합성계획법과 반응표면법으로 구성한 전산실험을 기반으로 하는 가중 다목적 최적화 기법을 적용하여 TMD의 최적 동조 매개변수를 찾고자 하였다. 본 연구에서는 10층 건물을 대상으로 El Centro를 벤치마크 지진으로 가진하여 반응모델을 생성하고, AHP를 이용하여 반응변수 사이의 상대적 중요도를 산출한 후 가중다목적최적화 설계를 실시하였다. 본 연구의 방법으로 최적화된 매개변수를 가진 TMD는 지진 응답을 효과적으로 저감하였다. El Centro 지진이 작용하는 경우 RSM 기반 가중 다목적 최적설계방법으로 최적화한 TMD의 진동수 응답과 최상층 평균제곱변위는 비제진시보다 각각 31.6%와 82.3% 향상되었고, 모든 적용 지진에서 기존 설계법보다 동등 또는 이상의 성능을 가진 것으로 확인되었다.

표고버섯 첨가 찹쌀머핀의 최적화 및 품질특성 (Optimization of Sweet Rice Muffin Processing Prepared with Oak Mushroom (Lentinus edodes) Powder)

  • 김보람;주나미
    • 한국식생활문화학회지
    • /
    • 제27권2호
    • /
    • pp.202-210
    • /
    • 2012
  • The purpose of this study was to bake sweet rice muffins with oak mushroom ($Lentinus$ $edodes$) powder. The process included substituting sweet rice flour for cake flour and adding oak mushroom powder. This study determined the optimal mixing conditions of oak mushroom muffins by adjusting the amounts of oak mushroom powder, whole eggs, and soybean oil. The mixing conditions for the oak mushroom muffins included 3 categories: oak mushroom powder (X1), whole eggs (X2), and soybean oil (X3) by Central Composite Design (CCD) which was optimized by Response Surface Methodology (RSM). Oak mushroom muffin formulation was optimized using rheology. Yellowness (p<0.001) and redness (p<0.05) displayed a linear model pattern, whereas lightness (p<0.05) was represented by a quadratic model. Among the sensory properties, variables that appeared to show significant values such as appearance (p<0.5), texture (p<0.5), and overall quality (p<0.5) were used to identify optimums. The result of mechanical properties showed significant values in gumminess (p<0.5) and chewiness (p<0.5). The numerical and graphical methods used in this study determined that the optimum formulation for oak mushroom powder sweet rice muffins was 8.75 g of oak mushroom powder, 235.95 g of whole eggs, and 19.93 g of soybean oil.

아임계수 가수분해를 통한 돈지로부터 지방산 생산의 최적화 (Optimization of Fatty Acids Production from Lard via Subcritical Water-Mediated Hydrolysis)

  • 류재훈;신희용
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.199-204
    • /
    • 2015
  • 지방산 생산을 위한 돈지의 아임계수 가수분해 공정을 최적화하기 위하여 17-run 중심합성법(central composite design)에 기초한 반응표면법(response surface methodology)이 사용되었다. 반응 온도, 오일 대비 물의 몰 비, 반응 시간과 같은 변수 및 이들의 상관관계가 지방산 함량에 미치는 영향을 조사하였으며, 지방산 함량을 예측하기 위하여 2차 다항 회귀방정식이 제안되었다. 최대 지방산 함량을 얻을 수 있는 반응 조건은 $288.5^{\circ}C$, 39.5몰 비, 29.5분이었으며, 이 조건에서의 예측 및 실제 지방산 함량은 각각 97.06% 및 96.99%였다.

소금대용 세발나물 첨가 쌀쿠키의 품질특성 및 최적화 (Quality Characteristics and Optimization of Rice Cookies Prepared by Substituting Salt with Spergularia Marina L. Griseb)

  • 김다솔;이선미;주나미
    • 한국식품조리과학회지
    • /
    • 제32권3호
    • /
    • pp.279-289
    • /
    • 2016
  • Purpose: This study was to determine the optimal composite recipe of rice cookie with 3 concentrations of Spergularia Marina L. Griseb, sugar and grape seed oil, using central composite design (CCD). Methods: The mixing condition of rice cookie was optimized by subjecting it to sensory evaluation and mechanical and physicochemical analysis using response surface methodology (RSM). Results: The results of mechanical and physicochemical analysis showed significant values for lightness, redness, yellowness, hardness, spread factor, loss rate, leavening rate, density, pH, moisture, sweetness and saltiness (p<0.05), and the results of sensory evaluation showed significant values for color, flavor, taste, texture, appearance and overall quality (p<0.05). As a result, the optimal sensory ratio was found to be 6.40 g of Spergularia Marina L. Griseb, 63.49 g of sugar and 106.19 g of grape seed oil. Conclusion: In conclusion, Spergularia Marina L. Griseb is a good source in natural antioxidant aimed at replacing salt, and it is possible to use in cookie or other food products to substitute salt.

반응표면법을 이용한 대형 L-type 자동화용접장치의 구조최적화 연구 (The structure Optimization Research of the Automation Welding Equipment of the Large L-type Using the Response Surface Method)

  • 장준호;정원지;이동선;정장식;정성호
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.138-144
    • /
    • 2013
  • The automation technology for overlay welding is needed due to the occurrence of severe corrosion and abrasion on the surface of internal contact in different shape of fittings. In Korea, different shapes of fittings have been manufactured by using the imported equipment of overlay welding automation at some companies. Thus the research on the development of overlay welding automation system (in short, OWAS) for a large L-type tube is urgently needed. In this paper, the investigation is focused on the optimal design of a supporting base for the (currently developing) OWAS of large L-type tube. Specifically we assume that the base which supports the equipment during the process of overlay welding is loaded as self-weight in the direction of gravity through static analysis especially when it is rotated 180 degree on the OWAS. For optimal design of a supporting base for OWAS of large L-type tube, Solidworks(R) (for 3-dimensional modelling) and ANASYS Workbench(R) (for structural analysis) are incorporated so as to proceed an optimization routines based on Response Surface Method (RSM) and Design of Experiment (DOE). In more specific, DOE finds out major factors (or dimensions) of the supporting base by using MINITAB(R). Then the regression equations between design variables (the major factors of supporting base) and response variables (deformation, stress and safety factor for the supporting base), which will be resulted in by RSM, verify the major factors of DOE. In the next step, Central Composite Design (CCD) plans 20 simulations of ANASYS Workbench(R) and then figures out the optimal values of design variables which will be reflected on the manufacturing of supporting base. Finally welding experiment is conducted to figure out the influence of overlay welding quality in applying the optimized design values of supporting base to the actual OWAS.

반응표면분석을 이용한 농축 포도즙의 알코올발효 조건 최적화 (Optimization for The Alcoholic Fermentation of Concentrated Grape Juice Using Response Surface Methodology)

  • 김윤숙;김로사;최희돈;최인욱
    • 한국식품영양과학회지
    • /
    • 제38권1호
    • /
    • pp.116-120
    • /
    • 2009
  • 포도즙의 알코올 발효 시 당 농도와 교반속도, 발효시간이 알코올함량과 총산도에 미치는 영향을 알아보기 위해 반응 표면분석을 이용하여 알코올발효 조건을 최적화하였다. 알코올함량은 10%, 총산도는 최소화되는 것을 목적으로 하여 알코올 발효조건을 최적화한 결과 $19.98^{\circ}Bx$로 농축한 국내산 Campbell early 포도즙에 효모를 접종시킨 후 교반속도 104.1 rpm으로 89.67시간 동안 발효시켰을 때 목적값에 가장 근접한 결과를 나타내었다. 알코올 발효 시 포도즙의 당도가 증가할수록 알코올함량과 총산도는 증가하는 경향을 나타내었고, 교반속도는 알코올함량과 총산도에 큰 영향을 주지 않는 것으로 나타났다. 또한 발효시간이 길어질수록 알코올 함량과 총산도가 증가하는 경향을 나타내었다.

LCD 유리 이송용 복합재료 로봇 핸드의 식스 시그마 강건설계 (Six Sigma Robust Design of Composite Hand for LCD Glass Transfer Robot)

  • 남현욱
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.455-461
    • /
    • 2005
  • This research studied robust design of composite hand for LTR (LCD glass Transfer Robot). $1^{st}$ DOE (Design of Experiment) was conducted to find out vital few Xs. 108 experiments were performed and their results were statistically analyzed. Pareto chart analysis shows that the geometric parameters (height and width of composite beam) are more important than material parameters $(E_{1},\;E_{2})$ or stacking sequence angle. Also, the stacking sequence of mid-layer is more important than that of outer-layer. The main effect plots shows that the maximum deflection of LTR hand is minimized with increasing height, width of beam and layer thickness. $2^{nd}$ DOE was conducted to obtain RSM (Response Surface Method) equation. 25 experiments were conducted. The CCD (Central Composite Design) technique with four factors was used. The coefficient of determination $(R^{2})$ for the calculated RSM equation was 0.989. Optimum design was conducted using the RSM equation. Multi-island genetic algorithm was used to optimum design. Optimum values for beam height, beam width, layer thickness and beam length were 24.9mm, 186.6mnL 0.15mm and 2402.4mm respectively. An approximate value of 0.77mm in deflection was expected to be a maximum under the optimum conditions. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the standard deviation of design parameter should be con trolled within $2{\%}$ of average design value

LCD 이송장치의 그립퍼부 시그마 기반 강건설계 (Six Sigma based on Robust Design of Gripper for LCD Transfer System)

  • 정원지;정동원;김호종;윤영민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.361-362
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD (Liquid Crystal Display) transfer system. In this paper, the 1st DOE (Design of Experiment) is conducted to find out main-effect factors fur the design of gripper part. Thirty-six experiments are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The 2nd DOE is conducted to obtain RSM (Response Surface Method) equation. The CCD (Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level reliability, the standard deviations of design parameters are shown to be controlled within 5% of average design value.

  • PDF

실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구 (Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments)

  • 김진태;김민진;손영준
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.