• Title/Summary/Keyword: CCD-18Co

Search Result 14, Processing Time 0.024 seconds

Overproduction of a γ-glutamyltranspeptidase from Bacillus amyloliquefaciens in Bacillus subtilis through medium optimization (배지최적화를 통한 재조합 바실러스 서브틸리스에서 바실러스 아밀로리퀴파시엔스 유래 γ-글루타밀펩타이드전달효소의 대량생산)

  • Cho, Hye-Bin;Roy, Jetendra Kumar;Park, Wu-Jin;Jeon, Byoung-Oon;Kim, Young-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.610-616
    • /
    • 2017
  • ${\gamma}$-Glutamyltranspeptidase (GGT, EC 2.3.2.2) transfers ${\gamma}$-glutamyl moiety from glutamine to amino acids or peptides and hydrolyzes glutamine to glutamate and ammonia. In order to overproduce ${\gamma}$-glutamyltranspeptidase from Bacillus amyloliquefaciens (BAGGT), the encoding gene was cloned and expressed in Bacillus subtilis. The productivity of BAGGT in Bacillus subtilis was improved by 42-fold by using a dual-promoter system that was generated by combining promoters from B. subtilis ${\alpha}$-amylase and BAGGT genes. Through optimization of medium composition by Plackett-Burman design and central composition design, BAGGT was produced at $18.3{\times}10^7U/L$ of culture in the optimized medium. Compared to previously used Luria-Bertani medium, the optimized culture medium (15 g/L molasses, 60 g/L corn steep liquor, 6 g/L yeast extract, 4 g/L NaCl, 6 g/L $K_2HPO_4$, and 2 g/L $KH_2PO_4$), resulted in a 4.3-fold increase in production of BAGGT.

Vehicle Detection using Feature Points with Directional Features (방향성 특징을 가지는 특징 점에 의한 차량 검출)

  • Choi Dong-Hyuk;Kim Byoung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.11-18
    • /
    • 2005
  • To detect vehicles in image, first the image is transformed with the steerable pyramid which has independent directions and levels. Feature vectors are the collection of filter responses at different scales of a steerable image pyramid. For the detection of vehicles in image, feature vectors in feature points of the vehicle image is used. First the feature points are selected with the grid points in vehicle image that are evenly spaced, and second, the feature points are comer points which m selected by human, and last the feature points are corner Points which are selected in grid points. Next the feature vectors of the model vehicle image we compared the patch of the test images, and if the distance of the model and the patch of the test images is lower than the predefined threshold, the input patch is decided to a vehicle. In experiment, the total 11,191 vehicle images are captured at day(10,576) and night(624) in the two local roads. And the $92.0\%$ at day and $87.3\%$ at night detection rate is achieved.

[Retraction] Characteristics and Optimization of Platycodon grandiflorum Root Concentrate Stick Products with Fermented Platycodon grandiflorum Root Extracts by Lactic Acid Bacteria ([논문 철회] 반응표면분석법을 이용한 젖산발효 도라지 추출물이 첨가된 도라지 농축액 제품의 최적화 연구)

  • Lee, Ka Soon;Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Park, Shin Young;Mun, Jung Sik;Kil, Mi Ja;Doh, Eun Soo;Kim, Hyun Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1386-1396
    • /
    • 2017
  • The purpose of this study was to determine the optimum Platycodon grandiflorum root concentrate (PGRC, $65^{\circ}Brix$), fermented P. grandiflorum root extract by Lactobacillus plantarum (FPGRE, $2^{\circ}Brix$), and cactus Chounnyouncho extract (Cactus-E, $2^{\circ}Brix$) for preparation of PGRC stick product with FPGRE using response surface methodology (RSM). The experimental conditions were designed according to a central composite design with 20 experimental points, including three replicates for three independent variables such as amount of PGRC (8~12 g), FPGRE (0~20 g), and Cactus-E (0~20 g). The experimental data for the sensory evaluation and functional properties based on antioxidant activity and antimicrobial activity were fitted with the quadratic model, and accuracy of equations was analyzed by ANOVA. For the responses, sensory and functional properties showed significant correlation with contents of three independent variables. The results indicate that addition of PGRC contributed to increased bitterness and acridity based on the sensory test and antimicrobial activity, addition of FPGRE contributed to increased antioxidant activity and antimicrobial activity, and addition of Cactus-E contributed to increased fluidity based on the sensory test, antioxidant activity, and antimicrobial activity. Based on the results of RSM, the optimum formulation of PGRC stick product was calculated as PGRC 8.456 g, FPGRE 20.00 g, and Cactus-Ex 20.00 g with minimal bitterness and acridity, as well as optimized fluidity, antioxidant activity, and antimicrobial activity.

Development of a Device for Estimating the Optimal Artificial Insemination Time of Individually Stalled Sows Using Image Processing (영상처리기법을 이용한 스톨 사육 모돈의 인공수정적기 예측 장치 개발)

  • Kim, D.J.;Yeon, S.C.;Chang, H.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.677-688
    • /
    • 2007
  • 돼지를 포함한 대부분의 동물은 일정한 발정주기를 가지고 일정한 시기에 배란을 하는 자연배란동물이지만, 토끼, 고양이, 밍크 등의 암놈은 교미자극에 의해 배란이 일어나는 유기배란동물이다. 또한 1년에 한 번만 발정하는 단발정동물과 1년에 수차례 발정하는 다발정동물이 있다. 이 중에서 모돈은 1년에 수차례 발정하는 다발정 동물로서 발정기에 들면 비발정기와는 다른 행동을 나타낸다(Diehl 등, 2001). 양돈가의 수익을 최대화하기 위해서는 비생산일수를 최소로 줄여야 한다. 모돈의 비생산일수를 줄일 수 있는 한 가지 방법은 성공적으로 교배를 시키는 것이다. 이처럼 성공적으로 교배를 시키기 위해서는 수정적기를 정확히 예측해야 한다. 만약 수정적기를 정확히 판단하지 못하여 수태가 되지 않으면, 비생산일수가 늘어나 손실을 입게 된다. 따라서 수정적기를 정확히 판단하는 것은 모돈의 성공적인 인공수정에 있어서 중요한 요소이다. 수정적기는 배란이 일어나기 전 10시간에서 12시간 사이이며, 발정이 시작되는 시점을 기준으로 하였을 때 경산돈의 경우 26시간에서 34시간 사이이고 미경산돈의 경우는 18시간에서 26시간 사이이다(Evans 등, 2001). 현재 하루에 두 번 모돈의 발정을 확인하는 것이 일반화되어 있으며, 이 때 웅돈을 접촉시키거나 육안관찰을 통하여 발정 유무를 판단한다. 이러한 방법에는 숙련된 기술과 풍부한 경험이 요구될 뿐만 아니라 총 소요노동력의 30% 정도가 요구된다(Perez 등, 1986). 하루에 두 번밖에 발정을 감지하지 않기 때문에 발정이 언제 시작되었는지를 정확히 알 수 없으며, 또한 발정의 대부분이 새벽에 시작되므로 수정적기를 정확히 판단하기란 매우 어렵다. 만약 발정을 감지했더라도 적기에 인공수정을 하지 못한다면, 수태율이 낮아지므로 경제적 손실이 초래된다. 현재 이러한 문제점 때문에 2회에서 3회에 걸쳐 인공수정을 하고 있으나 이에 따른 소요비용과 소요노동력 등은 양돈가의 부담을 가중시키는 요인이 되고 있다. 돼지는 발정기가 되면 비발정기에 나타내지 않던 외음부의 냄새를 맡는 행동, 귀를 세우는 행동 및 승가허용 행동 등을 나타낸다(Diehl 등, 2001). 또한 돼지는 비발정기에 비하여 발정기에 더 많은 활동량을 나타낸다(Altman, 1941; Erez and Hartsock, 1990). Freson 등(1998)은 스톨에서 개별적으로 사육되고 있는 모돈의 활동량을 적외선센서를 이용하여 측정함으로써 발정을 86%까지 감지하였다고 보고하였다. 그러나 이 연구는 단지 모돈의 발정을 감지하였을 뿐 번식관리에 있어서 가장 중요한 수정적기의 판단 기준을 제시하지 못하였다. 따라서, 본 연구는 스톨에서 사육되는 모돈의 활동량을 측정함으로써 발정시작시각을 감지하고 이를 기준으로 인공수정적기를 예측할 수 있는 인공수정적기 예측 장치를 개발한 후 이의 성능을 농장실증실험을 통하여 시험하고자 수행되었다.