• Title/Summary/Keyword: CCD noise correction

Search Result 4, Processing Time 0.016 seconds

Development of Correction Technologies for Quantification of Photon Measurement in Bio-Luminescence Image (생체발광영상에서 포톤 검출 정량화를 위한 보정기법의 개발)

  • Tak, Yoon-Oh;Kim, Hyeon-Sik;Park, Hyeong-Ju;Choi, Heung-Kook;Choi, Eun-Seo;Hann, S.-Wook;Lee, Byeong-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Bioluminescence imaging (BLI) is the most sensitive animal imaging technique for molecular imaging research. Generally, highly sensitive CCD is used to detect an optical probe introduced in a living mouse. However, in many cases, the light signal emitted from a probe is too small to detect because it is scattered and attenuated by the tissue prior to being detected. The problem is that scattering and attenuation not only inhibit accurate measurement but also make image quality down. Thus we introduced a new method to reduce noise by using property of CCD and method to improve image quality of bioluminescence image by using two steps Gaussian blurring.

A Study on Non-uniformity Correction Method through Uniform Area Detection Using KOMPSAT-3 Side-Slider Image (사이드 슬리더 촬영 기반 KOMPSAT-3 위성 영상의 균일 영역 검출을 통한 비균일 보정 기법 연구 양식)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1013-1027
    • /
    • 2021
  • Images taken with KOMPSAT-3 have additional NIR and PAN bands, as well as RGB regions of the visible ray band, compared to imagestaken with a standard camera. Furthermore, electrical and optical properties must be considered because a wide radius area of approximately 17 km or more is photographed at an altitude of 685 km above the ground. In other words, the camera sensor of KOMPSAT-3 is distorted by each CCD pixel, characteristics of each band,sensitivity and time-dependent change, CCD geometry. In order to solve the distortion, correction of the sensors is essential. In this paper, we propose a method for detecting uniform regions in side-slider-based KOMPSAT-3 images using segment-based noise analysis. After detecting a uniform area with the corresponding algorithm, a correction table was created for each sensor to apply the non-uniformity correction algorithm, and satellite image correction was performed using the created correction table. As a result, the proposed method reduced the distortion of the satellite image,such as vertical noise, compared to the conventional method. The relative radiation accuracy index, which is an index based on mean square error (RA) and an index based on absolute error (RE), wasfound to have a comparative advantage of 0.3 percent and 0.15 percent, respectively, over the conventional method.

The Study on the Radiation-Proof Video Camera system Remote Module of the Tube type (촬상관타입의 원격모듈화 내방사선 카메라시스템 연구)

  • Baek, Dong-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • The CCD camera is easily deteriorated by radiation, and an integrated camera using an image pickup tube is used in a high radiation area. We implemented a radiation camera system which is divided into a camera head using radiation-resistant electronic components and a remote control using weak radiation-resistant electronic components such as TR, IC, etc. According to the experimental results, the first damage of the electronic parts was IC for horizontal and vertical sync generation, and it was confirmed that if the radiation of $2{\times}10^5{\sim}10^6rad$ is accumulated, the normal function is lost. In addition, the signal transmission cable for remoteization has added an input/output buffer circuit and reduced the closed loop area of the shield and the cable to eliminate signal loss correction and noise. Therefore, it is expected that the maintenance cost will be greatly reduced and practical because only the camera head part can be used instead of replacing the entire system.

Non Uniformity Error of MSC (Multi Spectral Camera) System

  • Jang YoungJun;Yong SangSoon;Kang KeumSil;Kim JungAh;Kang SungDuk;Youn HeongSik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.432-435
    • /
    • 2004
  • MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. In this application, uniformity characteristic is important as well as GSD (Ground Resolved Distance) and SNR (Signal to Noise Ratio). MSC image chain is consisted of OM (Optical Module), CCD, Video processor, NUC and DCSU (Data Compression and Storage Unit). Each block makes and corrects MSC's nonuniformity response. This paper shows the cause of nonuniformity error and the correction scheme of MSC system from the electronic point of view.

  • PDF