• Title/Summary/Keyword: CC-CTM

Search Result 1, Processing Time 0.015 seconds

Crowd Activity Classification Using Category Constrained Correlated Topic Model

  • Huang, Xianping;Wang, Wanliang;Shen, Guojiang;Feng, Xiaoqing;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5530-5546
    • /
    • 2016
  • Automatic analysis and understanding of human activities is a challenging task in computer vision, especially for the surveillance scenarios which typically contains crowds, complex motions and occlusions. To address these issues, a Bag-of-words representation of videos is developed by leveraging information including crowd positions, motion directions and velocities. We infer the crowd activity in a motion field using Category Constrained Correlated Topic Model (CC-CTM) with latent topics. We represent each video by a mixture of learned motion patterns, and predict the associated activity by training a SVM classifier. The experiment dataset we constructed are from Crowd_PETS09 bench dataset and UCF_Crowds dataset, including 2000 documents. Experimental results demonstrate that accuracy reaches 90%, and the proposed approach outperforms the state-of-the-arts by a large margin.