건설업은 타산업, 특히 제조업 분야와 비하여 시장구성이 분절적이며 시장상황의 변동이 지극히 유동적이다. 그간 많은 연구자들이 기존의 비용예측 기법들을 통해 이러한 건설부문의 특성을 반영, 그 예측력을 높이기 위하여 많은 노력을 경주해오고 있다. 본 연구에서는 공동주택 비용투입 형태를 예측함에 있어서 사례기반추론(Case-Based Reasoning : CBR)을 이용, 기존 사업에 대한 실적데이터를 활용함에 있어서 유사한 프로젝트를 일정기준에 의하여 선별, 해당 비용정보만을 참조하여 향후 비용투입을 예측함으로써 그 정확도를 향상시키고자 하였다. 비용예측모델의 정확도를 제고하기 위해 비교 프로젝트간의 유사성을 비교함에 있어서, 비용정보는 세 가지 수준의 공종분류, 즉 전체프로젝트 수준, 7개 대공종 분류, 총 20개 세부공종별 분류에 따라 분석하였다. 본 연구의 결론은 데이터베이스화된 자료 중, 유사성을 계량화한 후 유사성평가 상위 $12{\sim}19%$의 프로젝트의 정보만을 참조하는 것이 그 예측도를 극대화시킬 수 있는 것으로 판명되었다.
Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.
물류 프로세스내의 상황결정은 전문적인 물류지원 연구의 중요한 목표이다. CBR(Case Based Reasoning)는 기존의 사건이나 경험으로 현재 발생한 문제의 해결책을 발견하기 위한 기술이다. CBR의 주요 역할은 현재 사건에 있는 문제의 상태를 인식하며 이 사건과 유사한 기존 사건 중의 하나를 통하여 현재 사건의 해결책을 추론함으로써 기존 시스템을 업데이트하는 것이다. 이러한 과정에서 가장 중요한 이슈는 유용한 사례베이스를 구축하는 것이다. 온토로지를 이용하여 상황을 모델화하면, 여러 개체들이 협업하에서 상황에 대한 인식을 공유할 수 있게 된다. 본 논문에서는 CBR 사례베이스 구축을 위한 참조로서 물류 온토로지를 디자인하였다.
본 연구는 기존의 선형적인 공사비 예측방법의 한계를 극복하고 사례기반추론 (Case Based Reasoning, CBR)기법을 통해 기획단계의 실적정보를 활용하여 신뢰도 높은 공사비 예측 모델을 제시하는 것이 목적이다. 이를 위하여 사례기반추론 기법과 유전자알고리즘 (Genetic Algorithm, GA)의 선택연산을 복합적으로 활용한 스프레드시트 기반의 교량공사비 추론모델을 제시하였다. 추론모델의 검증을 위하여 국내 교량공사 시공사례 4건을 적용하였으며, 적용 결과 평균 8.69%의 오차율로 나타나 교량공사비의 예측 정확도가 타 분석방법과 비교하여 상대적으로 높은 것으로 파악하였다. 연구에서 제시된 교량공사비 예측모델은 초기 설계단계에서 상세제원에 대한 정보를 획득할 수 없을 경우에, 교량의 대표적 제원정보 만으로 공사비 선택범위를 최소화된 오차율로 예측할 수 있으므로, 개선된 보정 방법으로서 교량공사의 합리적인 개략공사비 산정에 활용될 수 있을 것으로 판단된다.
현대의 생산공정에서는 많은 공정변수가 발생하고 있으며 복잡한 연관관계를 가지고 제품의 품질에 영향을 미치고 있다. 따라서 공정의 이상 유무 확인을 위해서는 많은 품질특성치를 동시에 관리하는 다변량 공정관리가 필요하다. 본 연구는 자기조직화 신경망(SOM)과 사례기반추론(CBR) 기법을 이용한 다변량 공정관리 방안을 제안한다. SOM을 이용하여 공정 데이터의 패턴을 생성하고 이상 유무 판단을 위해 기준패턴과 적합성 검정을 한다. 제안한 방법의 검증을 위해 공정에서 발생 가능한 패턴별로 데이터를 생성하여 실험하였고, 실험을 통해 이상패턴을 효과적으로 구별할 수 있음을 보였다. 또한 CBR 방법론을 적용하여 1종 오류는 줄이면서 2종 오류를 아주 작게 유지할 수 있음을 보임으로써, SOM과 CBR 이 결합된 절차가 다변량 공정관리를 위한 한 대안이 될 수 있음을 보였다.
Information Technology (IT) and the internet have been major drivers the changes in all aspects of the business processes and activities. They have brought major changes to the financial statements audit environment as well, which in turn has required modifications in audit procedures. There exist, however, certain difficulties with current audit procedures especially for the assessment of the level of control risk. This assessment is primarily based on the auditors' professional judgment and experiences, not based on the objective hies or criteria. To overcome these difficulties, this paper proposes a prototype decision support model named CRAS-CBR using case based reasoning (CBR) to support auditors in making their professional judgment on the assessment of the level of control risk of the general accounting system in the manufacturing industry. To validate the performance, we compare our proposed model with benchmark performances in terms of classification accuracy for the level of control risk. Our experimental results showed CRAS-CBR outperforms a statistical model (MDA) and staff auditor performance in average hit ratio.
사례기반추론은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터 마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접 이웃 집합을 어떻게 구성하느냐에 따라 영향을 받게 된다. 최근접 이웃 집합의 구성에 있어서 대부분의 선행 연구들은 고정된 값인 K개의 사례를 포함시키는 k-NN 방법을 채택해왔다. 그러나 k-NN 방법을 채택하는 사례기반추론 시스템은 k 값을 너무 크게 혹은 작게 설정하게 되면 예측 성능이 저하된다. 본 연구에서는 이러한 문제를 해결하기 위해 최근접 이웃 집합을 구성함에 있어서 유사도의 임계치 자체를 이용하는 s-NN 방법을 제안하였다. UCI의 Machine Learning Repository에서 제공하는 데이터를 사용하여 실험한 결과, s-NN 방법을 적용한 사례기반추론 모델이 k-NN 방법을 적용한 사례기반추론 모델보다 더 우수한 성능을 보여주었다.
사례기반추론(CBR:Case-Based Reasoning)은 기존 데이터와 사례 데이터들의 관계성을 추론하는 기법으로 유사도(Similarity)와 유클리디안(Euclidean) 거리 계산 방법이 가장 많이 사용되고 있다. 그러나 이 방법들은 기존 데이터와 사례 데이터를 모두 비교하기 때문에 데이터 검색과 필터링에 많은 시간이 소요되는 단점이 있다. 따라서 이를 해결하기 위한 다양한 연구들이 진행되고 있다. 본 논문에서는 기존의 유사도와 유클리디안 계산과정에서 발견된 패턴을 활용한 SE(Speed Euclidean-distance) 계산방법을 제안한다. SE 계산방법은 새로운 사례입력에 발견된 패턴과 가중치를 적용하여 빠른 데이터 추출과 수행시간 단축으로 시간적 공간적 제약사항에 대한 연산 속도를 향상시키고 불필요한 연산 수행을 배제하는 것이다. 실험을 통해 유사도나 유클리디안 방법으로 데이터를 추출하는 기존의 방법보다 제안하는 방법이 다양한 컴퓨터 환경과 처리 속도에서 성능이 향상됨을 확인할 수 있었다.
제조업에 있어서 판매 후 서비스 건수와 내용 등은 향후 서비스 제공을 위한 자원배분의 효율성 증진과 서비스 품질 향상을 위해서도 매우 중요한 정보이다. 따라서 기업들은 향후 발생하는 판매 후 서비스에 대해 정확히 예측하고 그에 따라 적절히 대처하는 능력을 확보할 필요성이 제조업을 중심으로 증가하고 있다. 그러나 실제로 이들 기업들이 활용하고 있는 서비스 수요예측 방법들은 전통적인 통계적인 예측기법이거나, 시뮬레이션을 기반한 기법들이다. 예를 들면, 전통적인 통계적인 예측기법으로는 회귀분석(regression analysis)의 경우, 다양한 제품모델에 대한 판매 후 서비스 발생 패턴이 선형적인 관계가 매우 적음에도 불구하고 선형으로 가정하여 추정한다는 점과 적정한 회귀식을 가정하여야 되며, 이러한 가정이 실제 경영환경에서는 매우 어렵다는 점 등이 기존의 예측기법들의 한계점으로 지적되고 있다. 본 연구에서는 디지털 TV 모델을 생산 판매 하는 A사의 사례연구를 통하여 최근 인공지능연구에서 각광을 받고 있는 사례기반추론(case-based reasoning; CBR) 기법을 활용한 서비스 수요예측 프레임워크를 제안하고자 한다. 또한, 사례기반추론에서 핵심적인 역할 중 하나인 유사 사례추출 방법에 있어서 가장 일반적인 nearest-neighbor 방법 이외의 유사 사례추출 방법을 제안하고자 한다. 특히, 본 연구에서 제안하는 유사 사례추출 방법은 인공신경망(artificial neural network)을 활용한 자기조직화지도(Self-Organizing Maps : SOM) 군집화 기법을 활용한 유사 사례추출 방식으로 이를 활용한 서비스 수요예측 프레임워크에 구현하고, 실제 기업의 판매 후 서비스 데이터를 활용하여 본 연구에서 제안하는 서비스 수요 예측 프레임워크의 유효성을 실증적으로 검증하고자 한다.
e쇼핑몰 경영자들은 고객들의 다양한 제품 구매 욕구를 충족시키기 위한 효율적 시스템에 많은 관심을 가지고 있다. 인터넷 쇼핑몰 운영에 있어 고객들의 개인적 구매 특성 및 취향을 파악하여 고객들을 효과적으로 관리하는데 많은 어려움이 있다. 상품 추천의 과정이 기획된 소수의 특정 상품을 고객의 유형 및 특성들의 고려 없이 공급자 중심으로 이루어져 고객관리의 문제점으로 지적되고 있다. 본 연구에서는 고객위주의 추천을 위해 규칙기반추론(Rule-Based Reasoning, RBR)과 사례기반추론(Case-Based Reasoning, CBR)을 하여 고객의 취향 및 구매 특성에 따른 추천방법을 제시한다. 기존의 제품 판매정보와 고객정보를 이용해 생성한 규칙베이스와 사례베이스의 고객특성과 입력된 고객특성의 유사도를 평가해서 고객의 취향에 따라 추천하도록 한다. 생성된 규칙과 사례기반의 추론으로 기존의 정보를 효과적으로 사용하고 또한 고객 및 시장 상황의 변화를 인식하고 지속적인 학습을 수행하여 지능적 추천이 이루어진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.