• Title/Summary/Keyword: CBP/p300

Search Result 15, Processing Time 0.017 seconds

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu;Chen, Xiaoxiang;Bi, Zirong;Liao, Jun;Zhao, Weian;Huang, Wenqi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.413-423
    • /
    • 2021
  • Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.

Regulation of Nrf2 Transactivation Domain Activity by p160 RAC3/SRC3 and Other Nuclear Co-Regulators

  • Lin, Wen;Shen, Guoxiang;Yuan, Xiaoling;Jain, Mohit R.;Yu, Siwang;Zhang, Aihua;Chen, J. Don;Kong, Ah-Ng Tony
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.304-310
    • /
    • 2006
  • Transcription factor NF-E2-related factor 2 (Nrf2) regulates the induction of Phase II detoxifying enzymes and antioxidant enzymes in response to many cancer chemopreventive compounds. In this study, we investigated the role of receptor associated coactivator (RAC3) or steroid receptor coactivator-3 (SRC3) and other nuclear co-regulators including CBP/p300 (CREB-binding protein), CARM1 (Coactivator-associated arginine methyltransferase), PRMT1 (Protein arginine methyl-transferase 1), and p/CAF (p300/CBP-associated factor) in the transcriptional activation of a chimeric Gal4-Nrf2-Luciferase system containing the transactivation domain (TAD) of Nrf2 in HepG2 cells. The results indicated that RAC3 up-regulated the transactivation activity of Gal4-Nrf2-(1-370) in a dose-dependent manner. The enhancement of transactivation domain activity of Gal4-Nrf2-(1-370) by RAC3 was dampened in the presence of dominant negative mutants of RAC3. Next we studied the effects of other nuclear co-regulators including CBP/p300, CARM1, PRMT1 and p/CAF, and the results showed that they had different level of positive effects on this transactivation domain activity of Gal4-Nrf2-(1-370). But importantly, synergistic effects of these co-regulators in the presence of RAC3/SRC3 on the transactivation activity of Gal4-Nrf2-(1-370) were observed. In summary, our present study showed for the first time that the 160 RAC3/SRC3 is involved in the functional transactivation of TAD of Nrf2 and that the other nuclear co-regulators such as CBP/p300, CARM1, PRMT1 and p/CAF can also transcriptionally activate this TAD of Nrf2 and that they could further enhance the transactivation activity mediated by RAC3/SRC3.

Determination of HIF-1α degradation pathways via modulation of the propionyl mark

  • Kwanyoung Jeong;Jinmi Choi;Ahrum Choi;Joohee Shim;Young Ah Kim;Changseok Oh;Hong-Duk Youn;Eun-Jung Cho
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.252-257
    • /
    • 2023
  • The hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxic stress under physiological and pathological conditions. HIF-1α protein stability is tightly regulated by the ubiquitin-proteasome system (UPS) and autophagy in normoxia, hypoxia, and the tumor environment to mediate the hypoxic response. However, the mechanisms of how the UPS and autophagy interplay for HIF-1α proteostasis remain unclear. Here, we found a HIF-1α species propionylated at lysine (K) 709 by p300/CREB binding protein (CBP). HIF-1α stability and the choice of degradation pathway were affected by HIF-1α propionylation. K709-propionylation prevented HIF-1α from degradation through the UPS, while activated chaperon-mediated autophagy (CMA) induced the degradation of propionylated and nonpropionylated HIF-1α. CMA contributed to HIF-1α degradation in both normoxia and hypoxia. Furthermore, the pan-cancer analysis showed that CMA had a significant positive correlation with the hypoxic signatures, whereas SIRT1, responsible for K709-depropionylation correlated negatively with them. Altogether, our results revealed a novel mechanism of HIF-1α distribution into two different degradation pathways.

Ubiquitin E3 ligases controlling p53 stability

  • Lee, Seong-Won;Seong, Min-Woo;Jeon, Young-Joo;Chung, Chin-Ha
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • The p53 protein plays a pivotal role in tumor suppression. The cellular level of p53 is normally kept low by proteasome-mediated degradation, allowing cell cycle progression and cell proliferation. Under stress conditions, such as DNA damage, p53 is stabilized and activated through various post-translational modifications of itself as well as of its regulatory proteins for induction of the downstream genes responsible for cell cycle arrest, DNA repair, and apoptosis. Therefore, the level of p53 should be tightly regulated for normal cell growth and for prevention of the accumulation of mutations in DNA under stress conditions, which otherwise would lead to tumorigenesis. Since the discovery of Mdm2, a critical ubiquitin E3 ligase that destabilizes p53 in mammalian cells, nearly 20 different E3 ligases have been identified and shown to function in the control of stability, nuclear export, translocation to chromatin or nuclear foci, and oligomerization of p53. So far, a large number of excellent reviews have been published on the control of p53 function in various aspects. Therefore, this review will focus only on mammalian ubiquitin E3 ligases that mediate proteasome-dependent degradation of p53.

Hypoxia-induced Angiogenesis during Carcinogenesis

  • Choe, Gyu-Sil;Bae, Mun-Gyeong;Jeong, Ju-Won;Mun, Hyo-Eun;Kim, Gyu-Won
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.120-127
    • /
    • 2003
  • The formation of new blood vessels, angiogenesis, is an essential process during development and disease. Angiogenesis is well known as a crucial step in tumor growth and progression. Angiogenesis is induced by hypoxic conditions and regulated by the hypoxia-inducible factor 1 (HIF-1). The expression of HIF-1 correlates with hypoxia-induced angiogenesis as a result of the induction of the major HIF-1 target gene, vascular endothelial cell growth factor (VEGF). In this review, a brief overview of the mechanism of angiogenesis is discussed, focusing on the regulatory processes of the HIF-1 transcription factor. HIF-1 consists of a constitutively expressed HIF-1 beta(HIF-1β) subunit and an oxygen-regulated HIF-1 alpha(HIF-1α) subunit. The stability and activity of HIF-1α are regulated by the interaction with various proteins, such as pVHL, p53, and p300/CBP as well as by post-translational modifications, hydroxylation, acetylation, and phosphorylation. It was recently reported that HIF-1α binds a co-activator of the AP-1 transciption factor, Jab-1, which inhibits the p53-dependent degradation of HIF-1 and enhances the transcriptional activity of HIF-1 and the subsequent VEGF expression under hypoxic conditions. ARD1 acetylates HIF-1α and stimulates pVHL-mediated ubiquitination of HIF-1α. With a growing knowledge of the molecular mechanisms in this field, novel strategies to prevent tumor angiogenesis can be developed, and form these, new anticancer therapies may arise.

Is Acetylation a Metabolic Rheostat that Regulates Skeletal Muscle Insulin Action?

  • LaBarge, Samuel;Migdal, Christopher;Schenk, Simon
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.297-303
    • /
    • 2015
  • Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle.

Emission Character of Dioxins and Precursors in the Control Devices of the MSWI (II) (도시쓰레기 소각로 방지시설 중 다이옥신류 및 전구물질의 배출특성(II))

  • Shin, S.K.;Chung, Y.H.;Lee, W.S.
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.68-74
    • /
    • 1999
  • The Concentrations of PCDDs/PCDFs and their precusors(chlorophenols, chlorobenzenes, PCB) were analyzed from the dioxin control device such as EP and SCR to know the emission patterns of these compounds and find the dioxin index compounds. The dioxin concentration increased 7 times in outlet part than inlet part of EP and the concentration of CBs, CPs and PCBs also were increased through this control device. These phenomia may be related to the operating temperature of Electroprecipitator(EP), which the operating temperature is near the $300^{\circ}C$, the method of the decreasing the operating temperature need to consider to prevent the formation of these compounds. In the selected catalytic reactor with wet scrubber(SCR+WS), these compounds were removed after passing the device over 90% for CPs, 30~40% for CBs and 60% for PCBs. But, the systematic study have to perform to reduce the formation of PCDDs/PCDFs and precusors.

  • PDF

Potent HAT Inhibitory Effect of Aqueous Extract from Bellflower (Platycodon grandiflorum) Roots on Androgen Receptor-mediated Transcriptional Regulation

  • Lee, Yoo-Hyun;Kim, Yong-Jun;Kim, Ha-Il;Cho, Hong-Yon;Yoon, Ho-Geun
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.457-462
    • /
    • 2007
  • Histone acetyltransferase (HAT) is a family of enzymes that regulate histone acetylation. Dysfunction of HAT plays a critical role in the development of cancer. Here we have screened the various plant extracts to find out the potent HAT inhibitors. The bellflower (Platycodon grandiflorum) root have exhibited approximately 30% of the inhibitory effects on HAT activity, especially p300 and CBP (CREB-binding protein) at the concentration of $100\;{\mu}g/mL$. The cell viability was decreased approximately 52% in LNCaP cell for 48 hr incubation. Furthermore, mRNA level of 3 androgen receptor target genes, PSA, NKX3.1, and TSC22 were decreased with bellflower root extract treatment ($100\;{\mu}g/mL$) in the presence of androgen. In ChIP assay, the acetylation of histone H3 and H4 in PSA promoter region was dramatically repressed by bellflower root treatment, but not TR target gene, Dl. Therefore, the potent HAT inhibitory effect of bellflower root led to the decreased transcription of AR target genes and prostate cancer cell growth with the repression of histone hyperacetylation.