• 제목/요약/키워드: CBMN

검색결과 17건 처리시간 0.019초

Buplueri Radix 의 1,2,4-benzentriol에 의해 유발된 DNA Damage에 대한 보호효과에 대한 연구 (Protective Effect of Buplueri Radix (BR) Against 1,2,4-benzentriol Induced DNA Damage in Human Lymphocytes)

  • 이영준;강수진
    • 대한예방한의학회지
    • /
    • 제12권2호
    • /
    • pp.51-59
    • /
    • 2008
  • Objectives : Buplueri Radix (BR), used medical plant in Korea traditional medicine, contains various compounds, including a series of triterpene saponins known as saikosaponins. We performed this study for the protective effect of BR against oxidative damage induced by 1,2,4-benzentriol(BT) in human lymphocytes. Methods : In order to investigate the protective effect of BR against carcinogens, genotoxicity induced by benzene metabolite, BT were performed using cytokinesis-block micronucleus(CBMN) assay and comet assay. Results : The frequency of micronucleus at 25, 50 and $100{\mu}M$ concentration of BT were $8{\pm}2.36$, $23{\pm}2.31$, $35{\pm}4.17$ respectively. In addition of BR with concentration of 25 and $50{\mu}g/mL$, MN frequencies were significantly decreased. According to comet assay, BT induced DNA damage in a dose-dependent manner at concentration of 10 and 50 while BT with BR treatment decreased DNA breakage. No genotoxicity was observed by BR($25{\sim}50{\mu}g/mL$) treatment alone on DNA breakage. Since BT can induce DNA damage through the generation of reactive oxygen species(ROS), we examined the level of ROS in human lymphocytes treated with BT and/or BR using DCF-DA, ROS-sensitive probe. The generation of ROS in BT-treated cells was also observed, and BR addition inhibited the level of BT-induced DNA damage. Conclusions : From above results it is suggested that BR could protect the cell and DNA from pro-oxidant effect by ROS by BT

  • PDF

Nuclear Anomalies, Chromosomal Aberrations and Proliferation Rates in Cultured Lymphocytes of Head and Neck Cancer Patients

  • George, Alex;Dey, Rupraj;Bhuria, Vikas;Banerjee, Shouvik;Ethirajan, Sivakumar;Siluvaimuthu, Ashok;Saraswathy, Radha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1119-1123
    • /
    • 2014
  • Head and neck cancers (HNC) are extremely complex disease types and it is likely that chromosomal instability is involved in the genetic mechanisms of its genesis. However, there is little information regarding the background levels of chromosome instability in these patients. In this pilot study, we examined spontaneous chromosome instability in short-term lymphocyte cultures (72 hours) from 72 study subjects - 36 newly diagnosed HNC squamous cell carcinoma patients and 36 healthy ethnic controls. We estimated chromosome instability (CIN) using chromosomal aberration (CA) analysis and nuclear level anomalies using the Cytokinesis Block Micronucleus Cytome Assay (CBMN Cyt Assay). The proliferation rates in cultures of peripheral blood lymphocytes (PBL) were assessed by calculating the Cytokinesis Block Proliferation Index (CBPI). Our results showed a significantly higher mean level of spontaneous chromosome type aberrations (CSAs), chromatid type aberration (CTAs) dicentric chromosomes (DIC) and chromosome aneuploidy (CANE UP) in patients (CSAs, $0.0294{\pm}0.0038$; CTAs, $0.0925{\pm}0.0060$; DICs, $0.0213{\pm}0.0003$; and CANE UPs, $0.0308{\pm}0.0035$) compared to controls (CSAs, $0.0005{\pm}0.0003$; CTAs, $0.0058{\pm}0.0015$; DICs, $0.0005{\pm}0.0003$; and CANEUPs, $0.0052{\pm}0.0013$) where p<0.001l. Similarly, spontaneous nuclear anomalies showed significantly higher mean level of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) among cases (MNi, $0.01867{\pm}0.00108$; NPBs, $0.0156{\pm}0.00234$; NBUDs, $0.00658{\pm}0.00068$) compared with controls (MNi, $0.00027{\pm}0.00009$; NPBs, $0.00002{\pm}0.00002$; NBUDs, $0.00011{\pm}0.00007$).The evaluation of CBPI supported genomic instability in the peripheral blood lymphocytes showing a significantly lower proliferation rate in HNC patients ($1.525{\pm}0.005552$) compared to healthy subjects ($1.686{\pm}0.009520$) (p<0.0001). In conclusion, our preliminary results showed that visible spontaneous genomic instability and low rate proliferation in the cultured peripheral lymphocytes of solid tumors could be biomarkers to predict malignancy in early stages.

Peripheral Blood Lymphocytes as In Vitro Model to Evaluate Genomic Instability Caused by Low Dose Radiation

  • Tewari, Shikha;Khan, Kainat;Husain, Nuzhat;Rastogi, Madhup;Mishra, Surendra P;Srivastav, Anoop K
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1773-1777
    • /
    • 2016
  • Diagnostic and therapeutic radiation fields are planned so as to reduce side-effects while maximising the dose to site but effects on healthy tissues are inevitable. Radiation causes strand breaks in DNA of exposed cells which can lead to chromosomal aberrations and cause malfunction and cell death. Several researchers have highlighted the damaging effects of high dose radiation but still there is a lacuna in identifying damage due to low dose radiation used for diagnostic purposes. Blood is an easy resource to study genotoxicity and to estimate the effects of radiation. The micronucleus assay and chromosomal aberration can indicate genetic damage and our present aim was to establish these with lymphocytes in an in vitro model to predict the immediate effects low dose radiation. Blood was collected from healthy individuals and divided into 6 groups with increasing radiation dose i.e., 0Gy, 0.10Gy, 0.25Gy, 0.50Gy, 1Gy and 2Gy. The samples were irradiated in duplicates using a LINAC in the radiation oncology department. Standard protocols were applied for chromosomal aberration and micronucleus assays. Metaphases were stained in Giemsa and 200 were scored per sample for the detection of dicentric or acentric forms. For micronuclei detection, 200 metaphases. Giemsa stained binucleate cells per sample were analysed for any abnormality. The micronuclei (MN) frequency was increased in cells exposed to the entire range of doses (0.1-2Gy) delivered. Controls showed minimal MN formation ($2.0%{\pm}0.05$) with triple MN ($5.6%{\pm}2.0$) frequency at the lowest dose. MN formation increased exponentially with the radiation dose thereafter with a maximum at 2Gy. Significantly elevated numbers of dicentric chromosomes were also observed, even at doses of 0.1-0.5Gy, compared to controls, and acentric chromosomes were apparent at 2Gy. In conclusion we can state that lymphocytes can be effectively used to study direct effect of low dose radiation.

Increased Micronucleus Frequency in Peripheral Blood Lymphocytes Contributes to Cancer Risk in the Methyl Isocyanate-Affected Population of Bhopal

  • Senthilkumar, Chinnu Sugavanam;Akhter, Sameena;Malla, Tahir Mohiuddin;Sah, Nand Kishore;Ganesh, Narayanan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4409-4419
    • /
    • 2015
  • The Bhopal gas tragedy involving methyl isocyanate (MIC) is one of the most horrific industrial accidents in recent decades. We investigated the genotoxic effects of MIC in long-term survivors and their offspring born after the 1984 occurrence. There are a few cytogenetic reports showing genetic damage in the MIC-exposed survivors, but there is no information about the associated cancer risk. The same is true about offspring. For the first time, we here assessed the micronucleus (MN) frequency using cytokinesis-blocked micronucleus (CBMN) assay to predict cancer risk in the MIC-affected population of Bhopal. A total of 92 healthy volunteers (46 MIC-affected and 46 controls) from Bhopal and various regions of India were studied taking gender and age into consideration. Binucleated lymphocytes with micronuclei (BNMN), total number of micronuclei in lymphocytes (MNL), and nuclear division index (NDI) frequencies and their relationship to age, gender and several lifestyle variabilities (smoking, alcohol consumption and tobacco-chewing) were investigated. Our observations showed relatively higher BNMN and MNL (P<0.05) in the MIC-affected than in the controls. Exposed females (EF) exhibited significantly higher BNMN and MNL (P<0.01) than their unexposed counterparts. Similarly, female offspring of the exposed (FOE) also suffered higher BNMN and MNL (P<0.05) than in controls. A significant reduction in NDI (P<0.05) was found only in EF. The affected group of non-smokers and non-alcoholics featured a higher frequency of BNMN and MNL than the control group of non-smokers and non-alcoholics (P<0.01). Similarly, the affected group of tobacco chewers showed significantly higher BNMN and MNL (P<0.001) than the non-chewers. Amongst the affected, smoking and alcohol consumption were not associated with statistically significant differences in BNMN, MNL and NDI. Nevertheless, tobacco-chewing had a preponderant effect with respect to MNL. A reasonable correlation between MNL and lifestyle habits (smoking, alcohol consumption and tobacco-chewing) was observed only in the controls. Our results suggest that EF and FOE are more susceptible to cancer development, as compared to EM and MOE. The genotoxic outcome detected in FOE reflects their parental exposure to MIC. Briefly, the observed cytogenetic damage to the MIC-affected could contribute to cancer risk, especially in the EF and FOE.

FISH 기법을 이용한 방사선에 의한 소핵과 이수성 분석 (Analysis of radiation-induced micronuclei and aneuploidy involving chromosome 1 and 4 by FISH technique)

  • 정해원;김태연;조윤희;김수영;강창모;하성환
    • Journal of Radiation Protection and Research
    • /
    • 제29권4호
    • /
    • pp.243-249
    • /
    • 2004
  • 본 연구는 소핵분석과 염색체 1번 및 4번의 DNA probe를 이용한 FISH 기법을 병행하여 방사선에 의한 소핵과 이수성에 관여하는 각 염색체의 감수성을 평가하고자 하였다. 방사선 선량에 따라 소핵의 빈도는 증가하였으며 염색체 1번과 4번의 이수성도 대조군, 1 Gy 및 2 Gy 에서 각각 2000개의 BN세포 당 9개, 47개 및 71개로 유의하게 증가하였다. 염색체 1번의 이수성 빈도는 4번에 비해 높게 관찰되었다. 염색체 1번 및 4번을 포함하는 소핵도 방사선의 선량에 따라 증가하였으며, 소핵내 염색체 1번의 포함빈도가 4번보다 높게 관찰되었다. 또한 방사선에 의한 소핵 중 낮은 빈도의 염색체 signal를 포함하는 소핵이 관찰됨으로써 방사선에 의한 소핵은 대부분 절단에 의한 것임을 확인할 수 있었다. 따라서 본 연구 결과 방사선은 이수성을 유도하며 이에 염색체가 다르게 관여할 수 있음을 보여준다.

DNA 회복 저해제 Cytosine Arabinoside, 3-Aminobenzamide 및 Hydroxyurea가 방사선에 의해 유도된 소핵과 이수성에 미치는 영향 (Effect of Cytosine Arabinoside, 3-Aminobenzamide and Hydroxyurea on the frequencies of radiation-induced micronuclei and aneuploidy in human lymphocytes)

  • 조윤희;김양지;강창모;하성환;정해원
    • Journal of Radiation Protection and Research
    • /
    • 제30권4호
    • /
    • pp.209-219
    • /
    • 2005
  • 소핵분석은 방사선의 생물학적 선량계로서 활용되고 있으나 이의 생성 기전은 아직까지 확실치 않다. 본 연구에서는 사람 림프구에 방사선을 조사한 후 DNA 손상회복 저해물질, Cytosine Arabinoside(Ara C)와 3-Aminobenzamide(3-AB) 그리고 Hydroxyurea(HU)를 특정 세포주기에 처리하고 소핵분석과 FISH기법을 이용하여 방사선에 의한 소핵 및 이수성의 정도를 구명하고자 하였다. 방사선 선량에 따라 소핵과 이수성의 빈도는 양반응 관계를 보이며 증가하였고 DNA 손상회복 저해물질 처리 후 소핵의 빈도는 모든 DNA 손상 회복 저해물질에 의해 증가하였으며 Ara C, 3AB, HU 순으로 나타났다. 이수성의 빈도는 HU와 Ara C에 의해서 크게 증가하였으나, 3AB는 아무런 영향을 주지 않았다. 또한 1번 염색체가 4번 염색체보다 방사선에 의한 소핵형성 및 이수성에 더 많이 관여되었다. 본 연구 결과, 방사선에 의한 소핵 및 이수성의 형성 과정은 여러 다른 기전이 관여하고 있음을 알 수 있었다.

에틸렌옥사이드(Ethylene oxide)에 노출된 병원 근로자들의 소핵 빈도와 유전적 감수성 지표와의 연관성 (Analysis of Micronuclei and Its Association with Genetic Polymorphisms in Hospital Workers Exposed to Ethylene Oxide)

  • 이선영;김양지;최영주;이중원;이영현;신미연;김원;윤충식;김성균;정해원
    • 한국환경보건학회지
    • /
    • 제37권6호
    • /
    • pp.429-439
    • /
    • 2011
  • Objectives: Ethylene oxide (EtO) is classified as a human carcinogen, but EtO is still widely used to sterilize heat-sensitive materials in hospitals. Employees working around sterilizers are exposed to EtO after sterilization. The aim of the present study was to assess the exposure of EtO level, coupled with occupationally induced micronuclei from hospital workers. The influence of genetic polymorphisms of detoxifying genes (GSTT1 and GSTM1) and DNA repair genes (XRCC1 and XRCC3) on the frequencies of micronuclei in relation to exposure of EtO was also investigated. Methods: The study population was composed of 35 occupationally exposed workers to EtO, 18 student controls and 44 unexposed hospital controls in Korea. Exposure to EtO is measured by passive personal samplers. We analyzed the frequencies of micronuclei by performing cytokinesis-block micronucleus assay (CBMN assay) and GSTM1, GSTT1, XRCC1, and XRCC3 were also genotyped by performing polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: The frequencies of micronuclei in EtO exposure group, student controls and hospital controls were $18.00{\pm}7.73$, $10.47{\pm}7.96$ and $13.86{\pm}6.35$ respectively and their differences were statistically significant, but no significant differences according to the level of EtO were observed. There was a dose-response relationship between the frequencies of micronuclei and cumulative dose of EtO, but no significantly differences were observed. We also investigated the influence of genetic polymorphisms (GSTM1, GSTT1, XRCC1, and XRCC3) on the frequencies of micronuclei, but there were no differences in the frequencies of micronuclei by genetic polymorphisms. Conclusions: The frequencies of micronuclei in EtO exposure group was significantly higher than control groups. A dose-response relationship was found between the level of EtO exposure and the frequencies of micronuclei, but no statistically differences were observed. We also found that the frequencies of micronuclei were increased according to cumulative EtO level. There was no association of the genetic GSTM1, GSTT1, XRCC1, and XRCC3 state with the frequency of micronuclei induced by EtO exposure.