• 제목/요약/키워드: CATHARE code

검색결과 10건 처리시간 0.028초

CREARE Downcomer실험에 대한 최적열수력 분석용 전산코드 CATHARE의 검증 (An Assessment of the Best Estimate Thermal-Hydraulic Analysis Code CATHARE on CREARE Downcomer Experiment)

  • Chang, Won-Pyo;Lee, Jae-Hoon;Kim, Dong-Su;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.274-284
    • /
    • 1992
  • 가압경수로 최적 열수력 분석용 전산코드인 CATHRE의 모델 평가를 위하여 가압경수로의 가상 냉각재 상실사고시 원자로 용기내의 유동현상을 모의한 1/15축소의 CREARE 실험을 모의 계산하였다. 이 실험에서 주요변수들은 비상노심 탱각재 주입량과 아냉정도 그리고 계통압력 및 노심에서 발생되는 증기유량이지만. 본 연구에서는 우선 Downcomer에서 역방향유동의 정성적 분석에 촛점을 맞추었다. 모의 계산 결과와 실험 결과를 비교할 때 정량적인 값 뿐 아니라 변화의 경향에서도 차이가 나타난 것은 주로 적절하지 못한 일부의 수치해석 모델과 상간의 계면마찰 때문으로 판단된다. 따라서 매개변수적 민감도 분석을 통하여 CATHARE 전산코드의‘VOLUME’에 접한 접합점에서 운동량 보존방정식의 상세연구 혹은 다차원 분석을 통해서 이 경우의 물리적 현상을 보다 현실적으로 나타낼 수 있다는 결론을 얻었다.

  • PDF

Assessment of CATHARE code against DEC-A upper head SBLOCA experiments

  • Anis Bousbia Salah
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.866-872
    • /
    • 2024
  • Design Extension Conditions (DEC)-A assessments of the operating nuclear power plants are generally considered for the purpose of getting additional safety demonstrations of their capability to undergo conditions that are generally more severe than DBAs by features implemented in the design and accident management measures. The pursued methodology is generally based upon Best Estimate approaches aiming at verifying that the safety limits in terms of integrity of the barriers against eventual large or early releases of radioactive material are fulfilled. These aspects are nowadays being experimentally and analytically addressed within the OECD/NEA experimental projects like the ATLAS and PKL series where a set of DEC-A experiments are considered. In this paper, experiments related to SBLOCA at the vessel upper head of the pressurized vessel of ATLAS and PKL are analytically assessed using the CATHARE code. These experiments includes issues related to common cause failure of the safety injection system and operator actions for preventing core excessive overheating. It is shown that, on the one hand, the safety features embedded in the design together with the operator actions are capable to prevent the progression towards a severe accident state and on the other hand, the code prediction capabilities for such scenario are generally good but still to be enhanced.

가압경수로의 부분충수 운전중 잔열제거계통 기능 상실사고시 가압기와 증기발생기 Manway 유출유로를 이용한 사고완화에 관한 연구 (A Study on the Vent Path Through the Pressurizer Manway and Steam Generator Manway under Loss of Residual Heat Removal System During Mid-loop Operation in PWR)

  • Y. J. Chung;Kim, W. S.;K. S. Ha;W. P. Chang;K. J. Yoo
    • Nuclear Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.137-149
    • /
    • 1996
  • 본 연구는 불란서 CEA에서 수행한 부분충수 운전 중 잔열제거계통 기능 상실사고 실험인 BETHSY 실험 6.9c를 CATHARE2 코드를 이용하여 분석하였다. BETHSY 6.9c 실험은 잔열제거 계통 기능상 실시 가압기와 중기발생기 출구공동의 Manway를 통해 노심에서 발생한 증기를 제거하여 계통의 가압 정도를 시험한 것이다. 연구의 주요목적은 사고발생시 예상되는 주요 물리적 현상의 이해와 과도기에 영향을 미치는 민감 변수를 확인하고 CATHARE2 코드의 예측능력을 평가하여, 실제원전의 유사사고 해석에 대한 신뢰성을 확보하는 것이다. 연구결과 CATHARE2 코드는 실험을 통해 관측된 주요 물리적 현상들을 타당하게 예측하였으나, 가압기와 밀림관의 DP를 과대 예측하여 원자로 상부공동의 최대압력을 실험보다 약 7kPa 높게 예측하였다. 노심 노출시간도 노심에서 기포율 분포를 비현실적으로 예측하여 실험보다 약 500초 지연되었다. 실험과 코드의 모의결과를 통하여 노심 노출은 중력주입에 의한 냉각수 보충만으로 충분히 회복될 수 있음을 확인하였다. CATHARE2 코드는 비록 상세한 현상들에 대해 다소 불화실성을 내포하였으나, 전반적인 거동분석에는 타당한 것으로 판단된다.

  • PDF

Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility

  • Audrius Grazevicius;Anis Bousbia-Salah
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1555-1562
    • /
    • 2023
  • Natural circulation phenomena have been nowadays largely revisited aiming to investigate the performances of passive safety systems in carrying-out heat removal under accidental conditions. For this purpose, assessment studies using CFD (Computational Fluid Dynamics) and also 3D thermal-hydraulic system codes are considered at different levels of the design and safety demonstration issues. However, these tools have not being extensively validated for specific natural circulation flow regimes involving flow mixing, temperature stratification, flow recirculation and instabilities. In the present study, an experimental test case based on a small-scale pool test rig experiment performed by Korea Atomic Energy Research Institute, is considered for code-to-code and code-to-experimental data comparison. The test simulation is carried out using the FLUENT and the 3D thermal-hydraulic system CATHARE-2 codes. The objective is to evaluate and compare their prediction capabilities with respect to the test conditions of the experiment. It was observed that, notwithstanding their numerical and modelling differences, similar agreement results are obtained. Nevertheless, additional investigations efforts are still needed for a better representation of the considered phenomena.

CATHARE2와 RELAP5/MOD3를 이용한 BETHSY 6.2 TC 소형 냉각재상실사고 실험결과의 해석 (Comparison Of CATHARE2 And RELAP5/MOD3 Predictions On The BETHSY 6.2% TC Small-Break Loss-Of-Coolant Experiment)

  • Chung, Young-Jong;Jeong, Jae-Jun;Chang, Won-Pyo;Kim, Dong-Su
    • Nuclear Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.126-139
    • /
    • 1994
  • 본 연구에서는 BETHSY 실험장치에서 수행한 6" 소형 냉각재 상실사고(LOCA) 실험을 최적 열수력 코드인 CATHARE2 V1.2와 RELAP5/MOD3를 이용하여 계산했다. 본 연구의 주 목적은 소형 LOCA시 관심을 가지는 주요 물리현상인 이상 임계유동, 감압과정, 노심수위 감소, loop seal clearing 등에 대한 두 코드의 소형 LOCA 계산모의능력을 평가하는 것이다. 두코드는 이상 유동현상의 전개 경향이나 발생시점을 비교적 잘 예측하는 것으로 나타났고, CATHARE2의 경우가 실험과 더 잘 일치했다. 그렇지만 두 코드는 loop seal clearing 현상, loop seal clearing 발생후의 노심수위, accumulator 유량거동 등의 예측에는 약간의 편차를 보였는데, 편차의 정도는 RELAP5가 CATHARE2보다 더 큰 것으로 나타났다. 두 코드의 편차요인을 보다 상세히 분석하기 위하여 계면 마찰력, mesh크기, 파단노즐 junction에서의 방출계수(Discharge coefficient)등에 대하여 민감도분석을 수행하였다. 그 결과 CATHARE2의 경우는 계면 마찰력을 증가시킴으로써 감압과정시 일차계통의 질량분포, 즉 증기 발생기 입구 공동(SG inlet plenum)에서의 차압과 Cross√er leg의 차압이 개선되었으며, 증기발생기 외측 열전달계수를 증가시킴으로써 중기발생기의 압력변화를 개선할 수 있었다. RELAP5의 경우는 어떤 하나의 입력변수를 변화시켜서 과도기의 결과를 개선할 수 없었으며 다만, 계면 마찰력 모델링에 여전히 많은 불화실성이 내포되어 있음을 확인했다.확인했다.

  • PDF

Unsteady Single-Phase Natural Circulation Flow Mixing Prediction Using CATHARE Three-Dimensional Capabilities

  • Salah, Anis Bousbia;Vlassenbroeck, Jacques
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.466-475
    • /
    • 2017
  • Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal-hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.

ON THE MODELLING OF TWO-PHASE FLOW IN HORIZONTAL LEGS OF A PWR

  • Bestion, D.;Serre, G.
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.871-888
    • /
    • 2012
  • This paper aims at presenting the state of the art, the recent progress, and the perspective for the future, in the modelling of two-phase flow in the horizontal legs of a PWR. All phenomena relevant for safety analysis are listed first. The selection of the modelling approach for system codes is then discussed, including the number of fluids or fields, the space and time resolution, and the use of flow regime maps. The classical two-fluid six-equation one-pressure model as it is implemented in the CATHARE code is then presented and its properties are described. It is shown that the axial effects of gravity forces may be correctly taken into account even in the case of change of the cross section area or of the pipe orientation. It is also shown that it can predict both fluvial and torrential flow with a possible hydraulic jump. Since phase stratification plays a dominant role, the Kelvin-Helmholtz instability and the stability of bubbly flow regime are discussed. A transition criterion based on a stability analysis of shallow water waves may be used to predict the Kelvin-Helmholtz instability. Recent experimental data obtained in the METERO test facility are analysed to model the transition from a bubbly to stratified flow regime. Finally, perspectives for further improvement of the modelling are drawn including dynamic modelling of turbulence and interfacial area and multi-field models.

SiRENE: A new generation of engineering simulator for real-time simulators at EDF

  • David Pialla;Stephanie Sala;Yann Morvan;Lucie Dreano;Denis Berne;Eleonore Bavoil
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.880-885
    • /
    • 2024
  • For Safety Assisted Engineering works, real-time simulators have emerged as a mandatory tool among all the key actors involved in the nuclear industry (utilities, designers and safety authorities). EDF, Electricité de France, as the leading worldwide nuclear power plant operator, has a crucial need for efficient and updated simulation tools for training, operating and safety analysis support. This paper will present the work performed at EDF/DT to develop a new generation of engineering simulator to fulfil these tasks. The project is called SiRENE, which is the acronym of Re-hosted Engineering Simulator in French. The project has been economically challenging. Therefore, to benefit from existing tools and experience, the SiRENE project combines: - A part of the process issued from the operating fleet training full-scope simulator. - An improvement of the simulator prediction reliability with the integration of High-Fidelity models, used in Safety Analysis. These High-Fidelity models address Nuclear Steam Supply System code, with CATHARE thermal-hydraulics system code and neutronics, with COCCINELLE code. - And taking advantage of the last generation and improvements of instructor station. The intensive and challenging uses of the new SiRENE engineering simulator are also discussed. The SiRENE simulator has to address different topics such as verification and validation of operating procedures, identification of safety paths, tests of I&C developments or modifications, tests on hydraulics system components (pump, valve etc.), support studies for Probabilistic Safety Analysis (PSA). etc. It also emerges that SiRENE simulator is a valuable tool for self-training of the newcomers in EDF nuclear engineering centers. As a modifiable tool and thanks to a skillful team managing the SiRENE project, specific and adapted modifications can be taken into account very quickly, in order to provide the best answers for our users' specific issues. Finally, the SiRENE simulator, and the associated configurations, has been distributed among the different engineering centers at EDF (DT in Lyon, DIPDE in Marseille and CNEPE in Tours). This distribution highlights a strong synergy and complementarity of the different engineering institutes at EDF, working together for a safer and a more profitable operating fleet.

A SUMMARY OF 50th OECD/NEA/CSNI INTERNATIONAL STANDARD PROBLEM EXERCISE (ISP-50)

  • Choi, Ki-Yong;Baek, Won-Pil;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Kim, Yeon-Sik
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.561-586
    • /
    • 2012
  • This paper describes a summary of final prediction results by system-scale safety analysis codes during the OECD/NEA/CSNI ISP-50 exercise, targeting a 50% Direct Vessel Injection (DVI) line break integral effect test performed with the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS). This ISP-50 exercise has been performed in two consecutive phases: "blind" and "open" phases. Quantitative comparisons were performed using the Fast Fourier Transform Based Method (FFTBM) to compare the overall accuracy of the collected calculations. Great user effects resulting from the combination of the possible reasons were found in the blind phase, confirming that user effect is still one of the major issues in connection with the system thermal-hydraulic code application. Open calculations showed better prediction accuracy than the blind calculations in terms of average amplitude (AA) value. A total of nineteen organizations from eleven countries participated in this ISP-50 program and eight leading thermal-hydraulic system analysis codes were used: APROS, ATHLET, CATHARE, KORSAR, MARS-KS, RELAP5/MOD3.3, TECH-M-97, and TRACE.