• Title/Summary/Keyword: CART

Search Result 564, Processing Time 0.021 seconds

Experimental Studies on Decentralized Neural Networks Using Reference Compensation Technique For Controlling 2-DOF Inverted Pendulum Based on Velocity Estimation (속도추정 기반의 2자유도 도립진자의 안정화를 위한 입력보상 방식의 분산 신경망 제어기에 관한 실험적 연구)

  • Cho, Hyun-Taek;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.341-349
    • /
    • 2004
  • In this paper, the decentralized neural network control of the reference compensation technique is proposed to control a 2-DOF inverted pendulum on an x-y plane. The cart with the 2-DOF inverted pendulum moves on the x-y plane and the 2-DOF inverted pendulum rotates freely on the x-y axis. Since the 2-DOF inverted pendulum is divided into two 1-DOF inverted pendulums, the decentralized neural network control is applied not only to balance the angle of pendulum, but also to control the position tracking of the cart. Especially, a circular trajectory tracking is tested for position tracking control of the cart while maintaining the angle of the pendulum. Experimental results show that position control of the inverted pendulum system is successful.

Motion Analysis of a Translating Flexible Beam Carrying a Moving Mass

  • Park, Sangdeok;Youngil Youm
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.30-39
    • /
    • 2001
  • This paper investigates vibrational motion of a flexible beam fixed on a moving cart and carrying a moving mass. The equations of motion of the beam-mass-cart system are analysed through the unconstrained modal analysis. The exact normal mode solution used in modal analysis correspond to the eigenfrequencies for each position of the moving mass and to the ratios of the weight of the beam-mass-car system. Time solutions of normal modes are also transformed properly according to the position of the moving mass. Numerical simulations are carried out to obtain open-loop responses of the system in tracking pre-designed paths of the moving mass. The simulation results show that the model predicts the dynamic behavior of the beam-mass-cart system well. Experiments are carried out to show the validity of the proposed analytical method.

  • PDF

SUPPORT Applications for Classification Trees

  • Lee, Sang-Bock;Park, Sun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.565-574
    • /
    • 2004
  • Classification tree algorithms including as CART by Brieman et al.(1984) in some aspects, recursively partition the data space with the aim of making the distribution of the class variable as pure as within each partition and consist of several steps. SUPPORT(smoothed and unsmoothed piecewise-polynomial regression trees) method of Chaudhuri et al(1994), a weighted averaging technique is used to combine piecewise polynomial fits into a smooth one. We focus on applying SUPPORT to a binary class variable. Logistic model is considered in the caculation techniques and the results are shown good classification rates compared with other methods as CART, QUEST, and CHAID.

  • PDF

Analysis of the Timing of Spoken Korean Using a Classification and Regression Tree (CART) Model

  • Chung, Hyun-Song;Huckvale, Mark
    • Speech Sciences
    • /
    • v.8 no.1
    • /
    • pp.77-91
    • /
    • 2001
  • This paper investigates the timing of Korean spoken in a news-reading speech style in order to improve the naturalness of durations used in Korean speech synthesis. Each segment in a corpus of 671 read sentences was annotated with 69 segmental and prosodic features so that the measured duration could be correlated with the context in which it occurred. A CART model based on the features showed a correlation coefficient of 0.79 with an RMSE (root mean squared prediction error) of 23 ms between actual and predicted durations in reserved test data. These results are comparable with recent published results in Korean and similar to results found in other languages. An analysis of the classification tree shows that phrasal structure has the greatest effect on the segment duration, followed by syllable structure and the manner features of surrounding segments. The place features of surrounding segments only have small effects. The model has application in Korean speech synthesis systems.

  • PDF

Classification and Regression Tree Analysis for Molecular Descriptor Selection and Binding Affinities Prediction of Imidazobenzodiazepines in Quantitative Structure-Activity Relationship Studies

  • Atabati, Morteza;Zarei, Kobra;Abdinasab, Esmaeil
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2717-2722
    • /
    • 2009
  • The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-activity relationship (QSAR) context on a data set consisting of the binding affinities of 39 imidazobenzodiazepines for the α1 benzodiazepine receptor. The 3-D structures of these compounds were optimized using HyperChem software with semiempirical AM1 optimization method. After optimization a set of 1481 zero-to three-dimentional descriptors was calculated for each molecule in the data set. The response (dependent variable) in the tree model consisted of the binding affinities of drugs. Three descriptors (two topological and one 3D-Morse descriptors) were applied in the final tree structure to describe the binding affinities. The mean relative error percent for the data set is 3.20%, compared with a previous model with mean relative error percent of 6.63%. To evaluate the predictive power of CART cross validation method was also performed.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 박철수;손용우;이증빈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.274-283
    • /
    • 2002
  • This paper presents an efficient models for reinforeced concrete structures using CART-ANFIS(classification and regression tree-adaptive neuro fuzzy inference system). a fuzzy decision tree parttitions the input space of a data set into mutually exclusive regions, each of which is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the Predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it everywhere continuous and smooth. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

  • PDF

Analysis of Approaches of Integrating e-Marketplace with ERP in B2B EC (B2B EC에서의 전자시장과 ERP의 통합 접근방식 분석)

  • Lim, Gyoo-Gun
    • Journal of Information Technology Services
    • /
    • v.2 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Among EC areas. the B2B EC market is being spotlighted as an important interesting research area considering its size and the potential impact on companeies and the whole society. In comparison with private consumers in B2C EC. business buyers in B2B EC have to precisely keep track of the purchase records. and integrate them with the buyer's e-procurement system, which might have been implemented as a part of integrated ERP (Enterprise Resource Planning) systems. There are three approaches for such integration between ERP and e-marketplace in B2B EC; Two previous approaches are Inside-Out approach and Outside-In approach. And a newly, one is b-cart approach. In this paper, we try to survey these three approaches and make a comparison analysis. From this research. we identify that the b-cart approach is the most efficient framework in integrating ERP with e-marketplace in B2B EC.

The Effect of Personalization on Cross-Buying and Shopping Cart Abandonment Based on the S-O-R Framework

  • Kon Woo Kwon;Gee-Woo Bock;Kyu Min Hwang
    • Asia pacific journal of information systems
    • /
    • v.30 no.2
    • /
    • pp.252-283
    • /
    • 2020
  • Online retail is a growing opportunity for retailers and consumers. Cross-buying provides companies with an opportunity to increase their revenue contributions from existing consumers. In many fields, especially in the service sector, cross-selling is an easier strategy to use relative to increasing revenue rather than acquiring new consumers. Website personalization has been a powerful indispensable tool for web-based companies and end users. Using the Mehrabian and Russell's Stimulus-Organism-Response framework, we experimentally examined how an online retailing merchant's environmental stimuli (S) arouses internal affective and cognitive states (O), that affect consumers' approach-avoidance behavior (R) in cross-buying and shopping cart abandonment in online transactions.

Analysis of Factors Influencing upon the Metro Wear Using the Classification and Regression Trees (CART 분석을 이용한 지하철 마모 영향인자 분석)

  • Jeong, Min Chul;Lee, Won Woo;Kim, Jung Hoon;Kong, Jung Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.38-38
    • /
    • 2011
  • 일반적으로 레일마모는 열차의 주행안전 및 승차감에 미치는 영향이 크고, 소음 진동의 주요원인으로 작용한다. 또한 레일마모가 발생할 경우 궤도구조의 파괴를 촉진시킴으로써 차량 및 궤도유지보수비를 크게 증가시킨다. 따라서 구간 특성 및 환경 영향 인자 등 현장에서 발생하는 마모 원인을 체계적으로 분석함으로써 마모를 저감할 수 있도록 차량운행 조건과 선로선형 및 궤도구조를 설계하는 것은 중요한 과제이다. CART(Classification And Regression Tree; 분류와 회귀나무) 분석은 패키지화된 좋은 분류 및 예측도구 기법으로 나무의 상위 분리수준에서 일반적으로 나타나는 가장 중요한 입력변수들을 사용하는 등의 입력변수를 선정하는 경우 매우 유용하다. 본 연구에서는 다변수 구간특성 및 환경인자를 고려한 검측 자료 상관관계 분석을 위한 회귀 나무기반 모델(TBM: Tree Based Model) 분석 수행을 위해 지하철 2호선 마모 데이터와 마모 데이터에 영향을 미치는 각종 다변수 구간특성 및 환경인자를 사용하였다. 2호선 지하철의 구간특성 인자 및 환경인자는 레일의 종류, 레일의 위치, 도상, 곡률반경, 캔트 슬랙 및 운행 일수 등으로 구분하였다. 레일의 종류는 ks-50kg과 ks-60kg 두 종류의 레일이 있으며, 레일의 위치는 지상과 지하로 크게 구분할 수 있다. 도상은 콘크리트 도상, 자갈 도상과 일부 구간의 방진상 콘크리트 도상으로 구분할 수 있으며, 곡률반경은 직선구간과 완화곡선 구간 및 최소 250m부터 627m까지 분포된 원 곡선 구간으로 구분할 수 있다. 캔트 간격은 최소 96cm 부터 120cm 간격으로 구분하며, 슬랙은 5~9cm에 분포하고, 운행 기간은 해당 기간 동안 유지보수 이력이 없는 구간을 선정하여 2005년부터 2006년까지 4번에 걸쳐 검측된 지하철 2호선 내선 마모데이터를 사용하였다. 총 X1부터 X7까지 총 7개의 구간특성 또는 환경특성을 영향인자로 선정하였으며, 이러한 영향인자에 의해 결정되는 종속 인자로 Y1인 직마모와 Y2인 측마모를 선정하여 이 중 실질적으로 지하철 궤도의 성능 평가에 주요 판단인자로 사용되는 측마모와 구간특성 및 환경영향인자와의 상관관계 분석을 수행하였다. 해당 마모 데이터가 검측되는 기간 동안 유지보수 이력이 없는 12272 point의 데이터를 검출하였고 CART 프로그램을 이용하여 데이터를 분석하였으며, CART 프로그램의 해석을 위해 종속변수인 직마모량은 각 검측 지점의 마모량에 해당하는 등급으로 변환하여 분석을 수행하였다. 레일의 마모에 영향을 미치는 구간특성 및 환경인자와 종속 변수로 사용된 레일의 마모량 사이의 CART를 이용한 상관관계 분석은 실제 구조물에서 영향인자간의 상관 관계와 유사하며, 추후 연구에서는 이를 바탕으로 하여 정량화된 검측 데이터를 종속변수로 하여 구간특성 또는 환경인자 등 외부 영향인자를 고려한 궤도 검측데이터와의 상관관계 분석을 수행할 계획이다.

  • PDF

Designing Neural Network Using Genetic Algorithm (유전자 알고리즘을 이용한 신경망 설계)

  • Park, Jeong-Sun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2309-2314
    • /
    • 1997
  • The study introduces a neural network to predict the bankruptcy of insurance companies. As a method to optimize the network, a genetic algorithm suggests optimal structure and network parameters. The neural network designed by genetic algorithm is compared with discriminant analysis, logistic regression, ID3, and CART. The robust neural network model shows the best performance among those models compared.

  • PDF