• Title/Summary/Keyword: CANada Deuterium Uranium Fuel Cycle

Search Result 7, Processing Time 0.018 seconds

Comparison of proliferation resistance among natural uranium, thorium-uranium, and thorium-plutonium fuels used in CANada Deuterium Uranium in deep geological repository by combining multiattribute utility analysis with transport model

  • Nagasaki, Shinya;Wang, Xiaopan;Buijs, Adriaan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.794-800
    • /
    • 2018
  • The proliferation resistance (PR) of Th/U and Th/Pu fuels used in CANada Deuterium Uranium for the deep geological repository was assessed by combining the multiattribute utility analysis proposed by Chirayath et al., 2015 with the transport model of radionuclides in the repository and comparing with that of the used natural U fuel case. It was found that there was no significant advantage for Th/U and Th/Pu fuels from the viewpoint of the PR in the repository. It was also found that the PR values for used nuclear fuels in the repository of Th/U, Th/Pu, and natural U was comparable with those for enrichment and reprocessing facilities in the pressurized water reactor (PWR) nuclear fuel cycle. On the other hand, the PR values considering the transport of radionuclides in the repository were found to be slightly smaller than those without their transport after the used nuclear fuels started dissolving after 1,000 years.

DYNAMIC MODELING AND ANALYSIS OF ALTERNATIVE FUEL CYCLE SCENARIOS IN KOREA

  • Jeong, Chang-Joon;Choi, Hang-Bok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium uranium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ${\sim}65000$ tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors.

Implementation of a Dry Process Fuel Cycle Model into the DYMOND Code

  • Park Joo Hwan;Jeong Chang Joon;Choi Hangbok
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.175-183
    • /
    • 2004
  • For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada deuterium uranium (CANDU) reactor, direct use of spent pressurized water reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-though and DUPIC fuel cycles.

THE STATUS AND PROSPECT OF DUPIC FUEL TECHNOLOGY

  • Yang Myung-Seung;Choi Hang-Bok;Jeong Chang-Joon;Song Kee-Chan;Lee Jung-Won;Park Geun-Il;Kim Ho-Dong;Ko Won-Il;Park Jang-Jin;Kim Ki-Ho;Lee Ho-Hee;Park Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.359-374
    • /
    • 2006
  • Since 1991, Korea, Canada and United States have performed the direct use of spent pressurized water reactor (PWR) fuel in the Canada deuterium uranium (CANDU) reactors (DUPIC) fuel development project. Unlike the Tandem fuel cycle, which requires a wet reprocessing, the DUPIC fuel technology can directly refabricate CANDU fuels from the PWR spent fuel and, therefore, is recognized as a highly proliferation-resistant fuel cycle technology, which can be adopted even in non-proliferation treaty countries. The Korea Atomic Energy Research Institute (KAERI) has fabricated DUPIC fuel elements in a laboratory-scale remote fuel fabrication facility. KAERI has demonstrated the fuel performance in the research reactor, and has confirmed the operational feasibility and safety of a CANDU reactor loaded with the DUPIC fuel using conventional design and analysis tools, which will be the foundation of the future practical and commercial uses of DUPIC fuel.

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

RECYCLING OPTION SEARCH FOR A 600-MWE SODIUM-COOLED TRANSMUTATION FAST REACTOR

  • LEE, YONG KYO;KIM, MYUNG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.47-58
    • /
    • 2015
  • Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. Thefsensitivity of cooling time before prior to pyro-processing was studied. As the cooling time sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to ${\leq}20%$ in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.