• Title/Summary/Keyword: CANDU Spent nuclear fuel

Search Result 66, Processing Time 0.028 seconds

CURRENT STATUS OF INTEGRITY ASSESSMENT BY SIPPING SYSTEM OF SPENT FUEL BUNDLES IRRADIATED IN CANDU REACTOR

  • Park, Jong-Youl;Shim, Moon-Soo;Lee, Jong-Hyeon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.875-882
    • /
    • 2014
  • In terms of safety and the efficient management of spent fuel storage, detecting failed fuel is one of the most important tasks in a CANada Deuterium Uranium (CANDU) reactor operation. It has been successfully demonstrated that in a CANDU reactor, on-power failed fuel detection and location systems, along with alarm area gamma monitors, can detect and locate defective and suspect fuel bundles before discharging them from the reactor to the spent fuel storage bay. In the reception bay, however, only visual inspection has been used to identify suspect bundles. Gaseous fission product and delayed neutron monitoring systems cannot precisely distinguish failed fuel elements from each fuel bundle. This study reports the use of a sipping system in a CANDU reactor for the integrity assessment of spent fuel bundles. The integrity assessment of spent fuel bundles using this sipping system has shown promise as a nondestructive test for detecting a defective fuel bundle in a CANDU reactor.

Development of the Defect Analysis Technology for CANDU Spent Fuel

  • Kim, Yong-Chan;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.215-223
    • /
    • 2021
  • The domestic CANDU nuclear power plants have been operated for a long time and various unforeseen spent fuel defects have been discovered. As the spent fuel defects are important factors in the safety of the nuclear power plant, a study on the analysis of the spent fuel defects to prevent their recurrence is necessary. However, in cases where the fuel rods inside the fuel assembly are defected, it is difficult to dismantle the fuel assembly owing to their welded structure and the facility conditions of the plant. Therefore, it is impossible to analyze the spent fuel defect because it is difficult to visually check the shape of the fuel defect. To resolve these problems, an analysis technology that can predict the number of defected fuel rods and defect size was developed. In this study, we developed a methodology for investigating the root cause of spent fuel defects using a database of the earlier fuel defects in the plants. It is anticipated that in the future this analysis technology will be applied when spent fuel defects occur.

Nuclear Characteristics of a New(PWR-PHWR) Fuel Cycle (PWR-PHWR 핵연료 주기의 핵적 특성)

  • Jae Woong Song;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.185-192
    • /
    • 1985
  • The fissile content of PWR spent fuel is higher than that of natural uranium which is normal fuel for CANDU type reactor. Investigated are the concepts of PWR spent fuel utilization in CANDU type reactor to diversify uranium resource and partially to solve storage problems of PWR spent fuel being gradually accumulated. Nuclear characteristics of uranium-plutonium mixed oxide fuel loaded in CANDU type reactor are analysed using the WIMS/D computer code. In this study, analyses are solely carried out upon the current CANDU type reactor design without changingany reactivity control devices.

  • PDF

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

  • Choi, Heui-Joo;Lee, Jong Youl;Choi, Jongwon
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.29-40
    • /
    • 2013
  • Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

A Scheme of Better Utilization of PWR Spent Fuels (가압경수로 사용후핵연료 이용확대 방안연구)

  • Chung, B.J.;Kang, C.S.
    • Nuclear Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.165-173
    • /
    • 1991
  • The recycle of PWR spent fuels in a CANDU reactor, so called the tandem fuel cycle is Investigated in this study. This scheme of utilizing Pm spent fuels will ease the shortage of spent fuel storage capacity as well as will improve the use of uranium resources. The minimum modification to the design of present CANDU reactor is seeked in the recycle. Nine different fuel types are considered in this work and are classified into two categories: refabrication and reconfiguration For refabrication, PWR spent fuels are processed and refabricated into the present 37 rod lattice structure of fuel bundle, and for reconfiguration, meanwhile, spent fuels are simply disassembled and rods are cut to fit into the present grid configuration of fuel bundle without refabrication. For each fuel option, the neutronics calculation of lattice was conducted to evaluate the allowable burnup and power distribution. The fuel cycle cost of each option was also computed to assess the economic justification. The result show that most tandem fuel cycle options considered in this study are technically feasible as well as economically viable.

  • PDF

Development of CANDU Spent Fuel Disposal Concepts for the Improvement of Disposal Efficiency (처분효율 향상을 위한 CANDU 사용후핵연료 처분개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • There are two types of spent fuels generated from nuclear power plants, CANDU type and PWR type. PWR spent fuels which include a lot of reusable material can be considered to be recycled. CANDU spent fuels are considered to directly disposed in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System(KRS) which is to dispose both PWR and CANDU spent fuels, the more effective CANDU spent fuel disposal systems have been developed. To do this, the disposal canister has been modified to hold the storage basket which can load 60 spent fuel bundles. From these modified disposal canisters, the disposal systems to meet the thermal requirement for which the temperature of the buffer materials should not be over $100^{\circ}C$ have been proposed. These new disposals have made it possible to introduce the concept of long tenn storage and retrievabililty and that of the two-layered disposal canister emplacement in one disposal hole. These disposal concepts have been compared and analyzed with the KRS CANDU spent fuel disposal system in terms of disposal effectiveness. New CANDU spent fuel disposal concepts obtained in this study seem to improve thermal effectiveness, U-density, disposal area, excavation volume, and closure material volume up to 30 - 40 %.

  • PDF

Realistic thermal analysis of the CANDU spent fuel dry storage canister

  • Tae Gang Lee;Taehyeon Kim;Taehyung Na;Byongjo Yun;Jae Jun Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4597-4606
    • /
    • 2023
  • Thermal analysis of the CANDU spent fuel dry storage canister is very important to ensure the integrity of the spent fuel. The analyses have been conducted using a conservative approach, with a particular focus on the peak cladding temperature (PCT) of the fuel rods in the canister. In this study, we have performed a realistic thermal analysis using a computational fluid dynamics (CFD) code. The canister contains 9 fuel bundle baskets. A detailed analysis of even a single basket requires significant computational resources. To overcome this challenge, we replaced each basket with an equivalent heat conductor (EHC), of which effective thermal conductivity (ETC) is developed from the results of detailed CFD calculations of a fuel bundle basket. Then, we investigated the effects of some conservative models, ultimately aiming at a realistic analysis. The results revealed: (i) The influence of convective heat transfer in the basket cannot be ignored, but it's less significant than expected. (ii) Modeling of the lifting rod is crucial, as it plays a decisive role in axial heat transfer at the center of the canister and significantly reduces the PCT. (iii) Convection within the canister is very important, as it not only reduces the PCT but also shifts its location upwards.

A Complementary Analysis for the Structural Safety Evaluation of the Spent Nuclear Fuel Disposal Canister for the Canadian Deuterium and Uranium Reactor (중수로(CANDU)용 고준위폐기물 처분용기의 구조적 안전성 평가 보완 해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.381-390
    • /
    • 2009
  • In this paper, a complementary analysis for the structural safety evaluation of the spent nuclear fuel disposal canister developed for the Canadian Deuterium and Uranium(CANDU) reactor for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been performed. However this developed structural model of the spent nuclear fuel disposal canister which has 33 spent nuclear fuel baskets and whose diameter is 122cm is too heavy to handle without any structural safety problem. Hence a lighter structural model of the spent nuclear fuel disposal canister which is easy to handle has been required to develop very much. There are two methods to reduce the weight of the CANDU canister model. The one is to alleviate severe design conditions such as external loads and safety factor. The other is to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number. Hence, in this paper a complementary analysis to alleviate such severe design conditions is carried out and simultaneously structural analyses to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number below 33 are carried out by varying the external load and the canister diameter for the reduction of the canister weight. The complementary analysis results show that the diameter of canister can be shortened below 122cm to reduce the weight of the spent nuclear fuel disposal canister.