• Title/Summary/Keyword: CANDU (CANada Deuterium Uranium)

Search Result 21, Processing Time 0.018 seconds

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

Development of an Irradiation Device for High Temperature Materials in HANARO (하나로에서의 고온재료 조사장치 개발)

  • Cho, Man Soon;Choo, Kee Nam
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.145-153
    • /
    • 2011
  • The irradiation tests of materials in HANARO have been performed usually at temperatures below $300^{\circ}C$ at which the RPV(Reactor Pressure Vessel) materials of the commercial reactors such as the light water reactor and CANDU are operated. As VHTR(Very High Temperature Reactor) and SFR(Sodium-cooled Fast Reactor) projects are being carried as a part of the present Gen-IV program in Korea, the requirements for irradiation of materials at temperatures higher than $500^{\circ}C$ are recently being gradually increased. To overcome the restriction in the use at high temperature of the existing Al thermal media, a new capsule with double thermal media composed of two kinds of materials such as Al-Ti and Al-graphite was designed and fabricated more advanced than the single thermal media capsule. At the irradiation test of the capsule, the temperature of the specimens successfully reached $700^{\circ}C$ and the integrity of Al, Ti and graphite material was maintained.

Validation of a CFD Analysis Model for the Calculation of CANDU6 Moderator Temperature Distribution (CANDU6 감속재 온도분포 계산을 위한 CFD 해석모델의 타당성 검토)

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.499-504
    • /
    • 2001
  • A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory(SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard $k-\varepsilon$ turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than $2.0^{\circ}C$ over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well.

  • PDF

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Development of an Integrity Evaluation System (WIES) for Fuel Channels in CANDU Reactors (중수로 연료관 건전성 평가시스템(WIES) 개발)

  • Choi, Sung-Nam;Kim, Hyung-Nam;Yoo, Hyun-Joo;Kwon, Dong-Kee;Hwang, Won-Gul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1273-1279
    • /
    • 2010
  • Pressure tubes at the CANada Deuterium Uranium (CANDU) nuclear power plants are periodically inspected in accordance with the CSA N285.4 code. If flaws that do not satisfy the criteria given in CSA N285.4 are detected, the code permits a fitness-for-service assessment to determine the acceptability of the flawed pressure tubes. In this paper, the Wolsong In-service Evaluation System (WIES) is introduced; this system has been developed for the assessment of the flawed pressure tubes and is based on CSA N285.8. Since the system evaluates the integrity of flawed pressure tubes exactly and promptly during an in-service inspection, it will help in operating the Wolsong nuclear power plants without prolonging the outage period.

RECYCLING OPTION SEARCH FOR A 600-MWE SODIUM-COOLED TRANSMUTATION FAST REACTOR

  • LEE, YONG KYO;KIM, MYUNG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.47-58
    • /
    • 2015
  • Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. Thefsensitivity of cooling time before prior to pyro-processing was studied. As the cooling time sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to ${\leq}20%$ in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

DIAMETRAL CREEP PREDICTION OF THE PRESSURE TUBES IN CANDU REACTORS USING A BUNDLE POSITION-WISE LINEAR MODEL

  • Lee, Sung-Han;Kim, Dong-Su;Lee, Sim-Won;No, Young-Gyu;Na, Man-Gyun;Lee, Jae-Yong;Kim, Dong-Hoon;Jang, Chang-Heui
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.301-308
    • /
    • 2011
  • The diametral creep of pressure tubes (PTs) in CANDU (CANada Deuterium Uranium) reactors is one of the principal aging mechanisms governing the heat transfer and hydraulic degradation of the heat transport system (HTS). PT diametral creep leads to diametral expansion, which affects the thermal hydraulic characteristics of the coolant channels and the critical heat flux (CHF). The CHF is a major parameter determining the critical channel power (CCP), which is used in the trip setpoint calculations of regional overpower protection (ROP) systems. Therefore, it is essential to predict PT diametral creep in CANDU reactors. PT diametral creep is caused mainly by fast neutron irradiation, temperature and applied stress. The objective of this study was to develop a bundle position-wise linear model (BPLM) to predict PT diametral creep employing previously measured PT diameters and HTS operating conditions. The linear model was optimized using a genetic algorithm and was devised based on a bundle position because it is expected that each bundle position in a PT channel has inherent characteristics. The proposed BPLM for predicting PT diametral creep was confirmed using the operating data of the Wolsung nuclear power plant in Korea. The linear model was able to predict PT diametral creep accurately.

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

DEVELOPMENT OF AN IMPROVED FARE TOOL WITH APPLICATION TO WOLSONG NUCLEAR POWER PLANT

  • Lee, Sun Ki;Hong, Sung Yull
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.257-264
    • /
    • 2013
  • In Canada Deuterium Uranium (CANDU)-type nuclear power plants, the reactor is composed of 380 fuel channels and refueling is performed on one or two channels per day. At the time of refueling, the fluid force of the cooling water inside the channel is exploited. New fuel added upstream of the fuel channel is moved downstream by the fluid force of the cooling water, and the used fuel is pushed out. Through this process, refueling is completed. Among the 380 fuel channels, outer rows 1 and 2 (called the FARE channel) make the process of using only the internal fluid force impossible because of the low flow rate of the channel cooling water. Therefore, a Flow Assist Ram Extension (FARE) tool, a refueling aid, is used to refuel these channels in order to compensate for the insufficient fluid force. The FARE tool causes flow resistance, thus allowing the fuel to be moved down with the flow of cooling water. Although the existing FARE tool can perform refueling in Korean plants, the coolant flow rate is reduced to below 80% of the normal flow for some time during refueling. A Flow rate below 80% of the normal flow cause low flow rate alarm signal in the plant operation. A flow rate below 80% of the normal flow may cause difficulties in the plant operation because of the increase in the coolant temperature of the channel. A new and improved FARE tool is needed to address the limitations of the existing FARE tool. In this study, we identified the cause of the low flow phenomena of the existing FARE tool. A new and improved FARE tool has been designed and manufactured. The improved FARE tool has been tested many times using laboratory test apparatus and was redesigned until satisfactory results were obtained. In order to confirm the performance of the improved FARE tool in a real plant, the final design FARE tool was tested at Wolsong Nuclear Power Plant Unit 2. The test was carried out successfully and the low flow rate alarm signal was eliminated during refueling. Several additional improved FARE tools have been manufactured. These improved FARE tools are currently being used for Korean CANDU plant refueling.

A Comparison Study on Severe Accident Risks Between PWR and PHWR Plants (가압 경수로 및 가압중수로형 원자력 발전소의 중대사고 리스크 비교 평가)

  • Jeong, Jong-Tae;Kim, Tae-Woon;Ha, Jae-Joo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.3
    • /
    • pp.187-196
    • /
    • 2004
  • The health effects resulting from severe accidents of typical 1,000MWe KSNP(Korea Standard Nuclear Plant) PWR and typical 600MWe CANDU(CANada Deuterium Uranium) plants were estimated and compared. The population distribution of the site extending to 80km for both site were considered. The releaese fraction for various source term categories(STC) and core inventories were used in the estimation of the health effects risks by using the MACCS2(MELCOR Accident Consequence Code System2) code. Individuals are assumed to evacuate beyond 16km from the site. The health effects considered in this comparative study are early and cancer fatality risk, and the results are presented as CCDF(Complementary Cumulative Distribution Function) curves considering the occurrence probability of each STC's. According to the results, the early and cancer fatality risks of PHWR plants we lower than those of PWR plants. This is attributed the fact that the amount of radioactive mateials that released to the atmosphere resulting from the postulated severe accidents of PHWR plants are smaller than that of PWR plants. And, the dominating initiating event of STC that shows maximum early and cancer fatality risk is SGTR(Steam Generator Tube Rupture) for both plants. Therefore, the appropriated actions must be taken to reduce the occurrence probability and the amounts of radioactive materials released to the environment in order to protect the public for both PWR and PHWR plants.