• Title/Summary/Keyword: CAMx

Search Result 13, Processing Time 0.025 seconds

Modeling of the Air Pollutant Recirculation using the MM5-CAMx on Ozone Episode in Greater Seoul Area during June, 2004 (MM5-CAMx를 이용한 대기오염물질의 재순환현상 모델링: 2004년 6월 수도권 오존오염 사례연구)

  • Kim, Yoo-Keun;Oh, In-Bo;Kang, Yoon-Hee;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.297-310
    • /
    • 2007
  • Recent evidence has demonstrated that the pollutant recirculation can play an important role in leading to high ozone $(O_3)$ concentrations. In this study, the MM5-CAMx air quality modeling system was applied to simulate the pollutant recirculation and identify the transport of pollution during the high $O_3$ event (the maximum $O_3$ of 195 ppb) observed in the Greater Seoul Area (GSA) on $1{\sim}4$ June in 2004. The results showed a weak northeasterly synoptic wind during the night and early morning moved the air parcels containing the locally emitted urban pollution to the coast, which contributed to enhance $O_3$ formation in the southwest part of the GSA. As the sea breeze developed and started to penetrate inland in the late afternoon, the rapid build-up of $O_3$ concentration was found in the southwest coastal area due to the recirculation of the polluted air loaded with high level $O_3$. The simulated backward trajectories and observations at coastal sites confirmed the recirculation of pollutant with the late sea breeze is the dominant factor affecting the occurrence of high $O_3$ concentrations in the southwestern GSA.

Model Study with MM5 and CAMx in Istanbul Area during High Ozone Days

  • Anteplloglu, Umit;Inceeik, Selahattin;Topcu, Sema
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.11-14
    • /
    • 2003
  • Development pollution control strategies relies on photo-chemical transport models. These models integrate of mesoscale meteorological models with chemical moduls. In this study, the PSU/NCAR mesoscale meteorological model with CAMx is used to investigate the temporal and spatial dynamics of the photochemical air pollution in urban atmosphere of Istanbul for selected high ozone days. The ozone climatology for the selected days and model simulations are presented.

  • PDF

PM2.5 Source Apportionment Analysis to Investigate Contributions of the Major Source Areas in the Southeastern Region of South Korea (동남지역 주요 배출지역의 PM2.5 기여도 분석)

  • Ju, Hyeji;Bae, Changhan;Kim, Byeong-Uk;Kim, Hyun Cheol;Yoo, Chul;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.517-533
    • /
    • 2018
  • We utilize the CAMx (Comprehensive Air Quality Model with eXtensions) system and the PSAT (Particulate Source Apportionment Technology) diagnostic tool to determine the $PM_{2.5}$ concentration and to perform its source apportionment in the southeastern region of South Korea. For a year-long simulation, eight local authorities in the region such as Pohang, Daegu, Gyeongju, Ulsan, Busan-Gimhae, Gosung-Changwon, Hadong, and all remaining areas in Gyeongsangnam-do, are selected as source areas based on the emission rates of $NO_x$, $SO_x$, VOC, and primary PM in CAPSS (Clean Air Policy Support System) 2013 emissions inventory. The CAMx-PSAT simulation shows that Pohang has the highest $PM_{2.5}$ self-contribution rate (25%), followed by Hadong (15%) and Busan-Gimhae (14%). With the exception of Pohang, which has intense fugitive dust emissions, other authorities are strongly affected by emissions from their neighboring areas. This may be measured as much as 1 to 2 times higher than that of the self-contribution rate. Based on these estimations, we conclude that the efficiency of emission reduction measures to mitigate $PM_{2.5}$ concentrations in the southeastern region of South Korea can be maximized when the efforts of local or regional emission controls are combined with those from neighboring regions. A comprehensive control policy planning based on the collaboration between neighboring jurisdictional boundaries is required.

Development of AIRWARE System by EUREKA E!3266-EUROENVIRON WEBAIR SYSTEM (EUREKA E!3266 (EUROENVIRON WEBAIR SYSTEM)에 의한 대기질 모델링 시스템 (AIRWARE) 개발)

  • Lee, Hern-Chang;Jung, Jae-Chil;Fedra, Kurt;Kim, Dong-Young;Kim, Tai-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.167-174
    • /
    • 2009
  • The AIRWARE System was developed from one of the EUREKA PROJECT E!3266-EUROENVIRON WEBAIR System. The AIRWARE can nowcast and forecast the air quality of Seoul and Gyeonggi-do regions. To nowcast and forecast concentration of pollutants, MM5, AERMOD/CAMx, and SMOKE Models were used for each meteorologic data, measured data, and emission data. All DB were constructed for 2001 year. The episode analysis and time series analysis were accomplished to analyze the AIRWARE reliability. The simulated results were very well agreed with measured result for measured pollutants and meteorological data. The developed AIRWARE system can analyze with real-time, support web-based air quality information. This information can used with policy data to manage the air quality and prepare reduction plan in air impact assessment or air environmental plan.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region (기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk;Park, Soon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.

The Effect of Dust Emissions on PM10 Concentration in East Asia (황사 배출량이 동아시아 지역 PM10 농도에 미치는 영향)

  • Choi, Dae-Ryun;Koo, Youn-Seo;Jo, Jin-Sik;Jang, Young-Kee;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • The anthropogenic aerosols originated from the pollutant emissions in the eastern part of China and dust emitted in northwestern China in Yellow sand regions are subsequently transported via eastward wind to the Korean peninsula and then these aerosols induce high $PM_{10}$ concentrations in Korean peninsula. In order to estimate air quality considering anthropogenic and dust emissions, Comprehensive Air-quality Model with extension (CAMx) was applied to simulate $PM_{10}$ concentration. The predicted $PM_{10}$ concentrations without/with dust emissions were compared with observations at ambient air quality monitoring sites in China and Korea for 2008. The predicted $PM_{10}$ concentrations with dust emissions could depict the variation of measured $PM_{10}$ especially during Yellow sand events in Korea. The comparisons also showed that predicted $PM_{10}$ concentrations without dust emissions were under-predicted while predictions of $PM_{10}$ concentrations with dust emission were in good agreement with observations. This implied that dust emissions from desert and barren soil in southern Mongolia and northern China minimized the discrepancies in the $PM_{10}$ predictions in East Asia. The effect of dust emission on annual $PM_{10}$ concentrations in Korea Peninsula for year 2008 was $5{\sim}10{\mu}g/m^3$, which were about 20% of observed annual $PM_{10}$ concentrations.

Development of an Emissions Processing System for Climate Scenario Inventories to Support Global and Asian Air Quality Modeling Studies

  • Choi, Ki-Chul;Lee, Jae-Bum;Woo, Jung-Hun;Hong, Sung-Chul;Park, Rokjin J.;Kim, Minjoong J.;Song, Chang-Keun;Chang, Lim-Seok
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.330-343
    • /
    • 2017
  • Climate change is an important issue, with many researches examining not only future climatic conditions, but also the interaction of climate and air quality. In this study, a new version of the emissions processing software tool - Python-based PRocessing Operator for Climate and Emission Scenarios (PROCES) - was developed to support climate and atmospheric chemistry modeling studies. PROCES was designed to cover global and regional scale modeling domains, which correspond to GEOS-Chem and CMAQ/CAMx models, respectively. This tool comprises of one main system and two units of external software. One of the external software units for this processing system was developed using the GIS commercial program, which was used to create spatial allocation profiles as an auxiliary database. The SMOKE-Asia emissions modeling system was linked to the main system as an external software, to create model-ready emissions for regional scale air quality modeling. The main system was coded in Python version 2.7, which includes several functions allowing general emissions processing steps, such as emissions interpolation, spatial allocation and chemical speciation, to create model-ready emissions and auxiliary inputs of SMOKE-Asia, as well as user-friendly functions related to emissions analysis, such as verification and visualization. Due to its flexible software architecture, PROCES can be applied to any pregridded emission data, as well as regional inventories. The application results of our new tool for global and regional (East Asia) scale modeling domain under RCP scenario for the years 1995-2006, 2015-2025, and 2040-2055 was quantitatively in good agreement with the reference data of RCPs.