• 제목/요약/키워드: CAMP(Computer Aided Modeling Program)

검색결과 2건 처리시간 0.017초

유압 트랜스미션의 본드선도 모델링 및 시뮬레이션 (Computer Aided Bondgraphs Modeling and Simulation of Hydrostatic Transmission)

  • 우성우;박래석;이종길
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.54-62
    • /
    • 1996
  • To get the time response characteristics of the hydrostatic transmission, seaborne winch is modelde by using bond graphs. After modeling of its basic elements, it is represented as power flow, and the determination of variable causality. The state equations are derived by using CAMP. As dynamic stabilites and solutions are investigated by perturbation method and direct integration, winch system is stable. Simulations are performed under the conditions of low speed, high speed, and maximum tension. The pressure and flow rate of the hydrostatic transmission have a big overshoot. But when it is comparaed to the empirical data with simulation results, it is similar to each other. When a lead compensator is applied to improve response characteristics of the hydrostatic transmission, rise time and overshoot of the system are improved.

  • PDF

연속주조 빌렛의 3차원 열 및 유동해석 (Three-dimensional Numerical Modeling of Fluid Flow and Heat Transfer in Continuously Cast Billets)

  • 이성윤;이상목;박중길;홍준표
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.290-299
    • /
    • 2000
  • A three-dimensional model was developed in order to simulate heat and fluid flow of a continuous casting billet. The model was coded with the general-purpose CFD program FIDAP, using the finite element method. The present model consists of 2 individual calculation schemes, named model 1 and model 2. Mold region only was calculated to check the pouring stream through submerged nozzle with model 1. Entire region, which consists of mold, secondary cooling, radiation cooling was calculated to predict crater end position, temperature profile and solid shell profile(model 2). Standard $k-{\bullet}\hat{A}$ turbulence model has been applied to simulate the turbulent flow induced by submerged nozzle. Enthalpy method was adopted for the latent heat of solidification. Fluid flow in mushy zone was treated using variable viscosity approach. The more casting speed and superheat increased, the more metallurgical length increased. The shell thickness at the mold exit is proved to be mainly controlled by superheat by the present simulation. It may be concluded that the present model can be successfully applied far the prediction of heat and fluid flow behavior in the continuous casting process.

  • PDF